Show simple item record

dc.contributor.authorPereira Baptista, JDC
dc.date.accessioned2022-07-11T15:04:36Z
dc.date.issued2022-12
dc.identifier.issn2575-1077
dc.identifier.issn2575-1077
dc.identifier.otherARTN e202101284
dc.identifier.urihttp://hdl.handle.net/10026.1/19403
dc.descriptionFile replaced (incorrect version) on 12/7/22 by KT (LDS).
dc.description.abstract

<jats:p>Imbalances in mitochondrial and peroxisomal dynamics are associated with a spectrum of human neurological disorders. Mitochondrial and peroxisomal fission both involve dynamin-related protein 1 (DRP1) oligomerisation and membrane constriction, although the precise biophysical mechanisms by which distinct DRP1 variants affect the assembly and activity of different DRP1 domains remains largely unexplored. We analysed four unreported de novo heterozygous variants in the dynamin-1-like gene<jats:italic>DNM1L</jats:italic>, affecting different highly conserved DRP1 domains, leading to developmental delay, seizures, hypotonia, and/or rare cardiac complications in infancy. Single-nucleotide DRP1 stalk domain variants were found to correlate with more severe clinical phenotypes, with in vitro recombinant human DRP1 mutants demonstrating greater impairments in protein oligomerisation, DRP1-peroxisomal recruitment, and both mitochondrial and peroxisomal hyperfusion compared to GTPase or GTPase-effector domain variants. Importantly, we identified a novel mechanism of pathogenesis, where a p.Arg710Gly variant uncouples DRP1 assembly from assembly-stimulated GTP hydrolysis, providing mechanistic insight into how assembly-state information is transmitted to the GTPase domain. Together, these data reveal that discrete, pathological<jats:italic>DNM1L</jats:italic>variants impair mitochondrial network maintenance by divergent mechanisms.</jats:p>

dc.format.extente202101284-e202101284
dc.format.mediumElectronic
dc.languageen
dc.language.isoen
dc.publisherLife Science Alliance
dc.subjectDynamins
dc.subjectGTP Phosphohydrolases
dc.subjectHumans
dc.subjectMicrotubule-Associated Proteins
dc.subjectMitochondria
dc.subjectMitochondrial Dynamics
dc.subjectMitochondrial Proteins
dc.titleNovel DNM1L variants impair mitochondrial dynamics through divergent mechanisms
dc.typejournal-article
dc.typeJournal Article
dc.typeResearch Support, N.I.H., Extramural
dc.typeResearch Support, Non-U.S. Gov't
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000842555300004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.issue12
plymouth.volume5
plymouth.publication-statusPublished
plymouth.journalLife Science Alliance
dc.identifier.doi10.26508/lsa.202101284
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Health
plymouth.organisational-group/Plymouth/Faculty of Health/Peninsula Medical School
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.publisher.placeUnited States
dcterms.dateAccepted2022-07-07
dc.rights.embargodate2022-8-6
dc.identifier.eissn2575-1077
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.26508/lsa.202101284
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV