Abstract
This paper studies the dynamic filtration behavior of coal particles in metal fiber felt, by developing a three-dimensional model based on microstructure and arrangement mode of metal fiber felt identified by scanning electron microscope. Discrete element method (DEM) is coupled with Computational fluid dynamics (CFD) to simulate filtration of coal particles in metal fiber felt. The simulation mainly studies the moving trail and deposition characteristics of spherical coal particles. The results demonstrated that coal particles can bypass the metal fibers and enter the inside of the metal fiber felt through mesh channels. The moving trail of coal particles is similar to a broken line. It is also shown that most coal particles are trapped due to the deep filtration of metal fiber felt and the distribution pattern of them is inhomogeneous. The number of particles trapped by metal fiber felt is reduced in the direction of thickness. It is found that coal particles can be trapped not only by randomly arranged metal fibers, but also by coal particles deposited previously. Finally, the kinetic energy loss of coal particles mainly occurs in the initial stage when particles pass through metal fiber felt. And the velocity of coal particles inside metal fiber felt is maintained at 0.15–0.25 m/s.
DOI
10.1080/19942060.2019.1608306
Publication Date
2019-05-01
Publication Title
Engineering Applications of Computational Fluid Mechanics
Volume
13
Issue
1
Publisher
Taylor & Francis Group
ISSN
1997-003X
Embargo Period
2024-11-19
First Page
426
Last Page
437
Recommended Citation
Liu, X., Ding, X., Chen, C., An, R., & et al. (2019) 'Investigating the filtration behavior of metal fiber felt using CFD-DEM simulation', Engineering Applications of Computational Fluid Mechanics, 13(1), pp. 426-437. Taylor & Francis Group: Available at: https://doi.org/10.1080/19942060.2019.1608306