Show simple item record

dc.contributor.authorModica-Cliff, G.
dc.date.accessioned2023-07-27T13:01:28Z
dc.date.available2023-07-27T13:01:28Z
dc.date.issued2023
dc.identifier.citation

Modica-Cliff, G. (2023) 'Use of biomimicry model for the design of perforated composite platesl', The Plymouth Student Scientist, 16(1), pp. 49-85.

en_US
dc.identifier.urihttps://pearl.plymouth.ac.uk/handle/10026.1/21078
dc.description.abstract

There are many practical reasons for making perforations in composites, which include reducing weight and for joining components. Nature often produces strong materials that have multiple perforations allowing organisms to survive in tough environments, biomimicry seeks to utilise these features for artificial solutions. The project proposes to investigate natural structures then using the information gained, to suggest methods by which we could design/make more efficient openings in composite structures. For example, to increase window size in aircraft structures without compromising strength or aerodynamics. Holes are usually made by machining however this project proposes a to use tree knots holes as a model to mould holes in composites. The project will validate its predictions through experimentation. Three types of sample plates were manufactured using resin infusion under flexible tooling (RIFT) and unidirectional fibres. Test samples using both a moulded and drilled hole are compared against each other and that of a control sample without a hole to investigate if tensile improvements have been made. Digital image correlation (DIC) analysis shows a difference in the failure mode of each. The project was limited due to time and resources, so could be usefully repeated with a larger test sample size and different hole sizes. The results show that the moulded holes had a lower tensile strength but a higher tensile modulus than the drilled sample. The location of tow and stitching in the top layer did not appear to affect the results. However, the failure mode of the moulded samples was less catastrophic, showing a more gradual deterioration, which would prove advantageous in real-world scenarios, where products are monitored regularly. This process could be useful as it is reusable and saves on additional machining time and costs. Furthermore, there is no wasted material or risk of delamination and dust when installing components.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectbiomimicryen_US
dc.subjectperforated composite platesen_US
dc.subjectunidirectional compositeen_US
dc.subjectopen hole tensile strengthen_US
dc.subjectdigital image Correlationen_US
dc.titleUse of biomimicry model for the design of perforated composite platesen_US
dc.typeArticleen_US
plymouth.issue1
plymouth.volume16
plymouth.journalThe Plymouth Student Scientist


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 United States
Except where otherwise noted, this item's license is described as Attribution 3.0 United States

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV