Show simple item record

dc.contributor.supervisorHowell, Kerry
dc.contributor.authorMcQuaid, Kirsty Alexandra
dc.contributor.otherSchool of Biological and Marine Sciencesen_US
dc.date.accessioned2020-11-24T12:34:01Z
dc.date.available2020-11-24T12:34:01Z
dc.date.issued2020
dc.date.issued2020
dc.identifier10539795en_US
dc.identifier.urihttp://hdl.handle.net/10026.1/16676
dc.description.abstract

The abyssal environment remains one of the most poorly studied parts of the planet. While predominantly an environment dominated by soft sediments, some abyssal regions are known to harbour potato-sized, rock-like formations known as polymetallic nodules. These nodule provinces are now the subject of exploration by nations and their nominated contractors keen to develop a new deep-sea mining industry. This new industry has the potential for large-scale environmental impacts, but at present these impacts are difficult to predict, and therefore mitigate, as a result of the lack of ecological data and scientific understanding of these areas.

The studies carried out in this thesis aimed to contribute to our understanding of the epibenthic megafauna communities in areas targeted for mining, and to support the environmental management of mining activities through informing recommendations on environmental survey design and spatial planning. Imagery from nine transects of 800 m2 in the central Clarion Clipperton Fracture Zone (CCZ) were analysed to describe the epibenthic megafaunal communities at both regional (>1 000 km) and local (2 km) scales. The relationship between biological data derived from image analysis and modelled environmental data was examined to determine potential drivers of community composition and diversity, and rarefaction and extrapolation curves were used to assess levels of sampling required to establish baseline faunal assessments. Finally, clustering algorithms were used to classify broad-scale, modelled environmental data into different habitat types, to assess the effectiveness of the existing protected area network in the CCZ.

Megafauna morphotypes most vulnerable to mining, including rare, nodule-specific, suspension feeding, and sessile organisms, formed a large proportion of the CCZ epibenthic megafauna. Several dominant morphotypes were homogenous over large scales, but there was high turnover of rare morphotypes at regional and local scales. In addition, broad-scale bathymetric position index was identified as an important driver of both megafauna and metazoan diversity at regional scales. To characterise the community at 99% sample coverage, sampling units of ~2 800 - 4 600 m2, or 780 - 960 individuals, were required, with 26 - 27 x 800 m2 replicate transects. This sampling effort was much greater than is generally used in the deep sea. Finally, a top-down, broad-scale habitat classification of the CCZ identified 46 habitat types and revealed that many of these were underrepresented in the current protected area network, with several occurring almost exclusively in mining areas.

The body of research contained in this thesis suggests that 1) those morphotypes most vulnerable to mining form a substantial proportion of the megafauna communities in the CCZ, 2) greater sampling effort is required to fully characterise baseline environmental conditions of the CCZ, and 3) the current protected area network established in the CCZ does not adequately capture the range of habitats present. This thesis advocates for the use of Regional Environmental Assessment to address some of the pressing issues preventing progress in environmental management of deep-sea mining.

en_US
dc.description.sponsorshipUK Seabed Resources Ltd.en_US
dc.language.isoen
dc.publisherUniversity of Plymouth
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectDeep-seaen_US
dc.subjectEcologyen_US
dc.subjectAbyssen_US
dc.subjectPolymetallic noduleen_US
dc.subjectDeep-sea miningen_US
dc.subjectCCZen_US
dc.subjectHabitat classificationen_US
dc.subjectMegafaunaen_US
dc.subjectMarine Spatial Planningen_US
dc.subjectEnvironmental Managementen_US
dc.subject.classificationPhDen_US
dc.titleEcological Studies of an Abyssal Nodule Province to Inform the Management of Deep-sea Miningen_US
dc.typeThesis
plymouth.versionnon-publishableen_US
dc.identifier.doihttp://dx.doi.org/10.24382/469
dc.rights.embargoperiodNo embargoen_US
dc.type.qualificationDoctorateen_US
rioxxterms.versionNA
plymouth.orcid.id0000-0002-0395-8332en_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV