Show simple item record

dc.contributor.authorCarter, M
dc.contributor.authorMcClintock, B
dc.contributor.authorEmbling, C
dc.contributor.authorBennett, K
dc.contributor.authorThompson, D
dc.contributor.authorRussell, D
dc.date.accessioned2020-01-23T11:25:40Z
dc.date.issued2020-05
dc.identifier.issn0030-1299
dc.identifier.issn1600-0706
dc.identifier.urihttp://hdl.handle.net/10026.1/15337
dc.description.abstract

<jats:p>Rapid development of a successful foraging strategy is critical for juvenile survival, especially for naïve animals that receive no parental guidance. However, this process is poorly understood for many species. Although observation of early‐life movements is increasingly possible with miniaturisation of animal‐borne telemetry devices, analytical limitations remain. Here, we tracked 29 recently‐weaned grey seal <jats:italic>Halichoerus grypus</jats:italic> pups from colonies in two geographically distinct regions of the United Kingdom. We analysed at‐sea movements of pups throughout their initial months of nutritional independence to investigate the ontogeny of behaviour‐specific (foraging and travelling) movement patterns. Using generalized hidden Markov models (HMMs), we extended the conventional HMM framework to account for temporal changes in putative foraging and travelling movement characteristics, and investigate the effects of intrinsic (sex) and extrinsic (environment) factors on this process. Putative foraging behaviour became more tortuous with time, and travelling became faster and more directed, suggesting a reduction in search scale and an increase in travel efficiency as pups shifted from exploration to an adult‐like repeatable foraging strategy. Sex differences in movement characteristics were evident from colony departure, but sex‐specific activity budgets were only detected in one region. We show that sex‐specific behavioural strategies emerge before sexual size dimorphism in grey seals, and suggest that this phenomenon may occur in other long‐lived species. Our results also indicate that environmental variation may affect the emergence of sex‐specific foraging behaviour, highlighting the need to consider interacting intrinsic and extrinsic factors in shaping movement strategies of long‐lived vertebrates. Moreover, comparing the behavioural state estimations to those of a conventional HMM (no variation in state‐specific movement parameters) revealed differences in the amount and location of foraging activity, with implications for spatial conservation management. Overlooking intrinsic and extrinsic variation in movement processes could distort our understanding of foraging ecology, population dynamics and conservation requirements.</jats:p>

dc.format.extent630-642
dc.languageen
dc.language.isoen
dc.publisherNordic Ecological Society
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectexploration-refinement
dc.subjectnon-stationary model
dc.subjectontogeny
dc.subjectoptimal foraging theory
dc.subjectregional sex differences
dc.subjectstate-dependent distributions
dc.titleFrom pup to predator; generalized hidden Markov models reveal rapid development of movement strategies in a naïve long-lived vertebrate
dc.typejournal-article
dc.typeArticle
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000508942700001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.issue5
plymouth.volume129
plymouth.publisher-urlhttp://dx.doi.org/10.1111/oik.06853
plymouth.publication-statusPublished
plymouth.journalOIKOS
dc.identifier.doi10.1111/oik.06853
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dcterms.dateAccepted2019-12-19
dc.rights.embargodate2020-12-23
dc.identifier.eissn1600-0706
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.1111/oik.06853
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV