
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Biological and Marine Sciences

2020-05



A
cc

ep
te

d
 A

rt
ic

le
 

‘This article is protected by copyright. All rights reserved.’ 
 

 

From pup to predator; generalized hidden Markov models reveal rapid 

development of movement strategies in a naïve long-lived vertebrate 

 

Matt I. D. Carter1,3, Brett T. McClintock4, Clare B. Embling3, Kimberley A. Bennett5, 

Dave Thompson1 and Debbie J. F. Russell1,2 

 

1Sea Mammal Research Unit, Scottish Oceans Inst., Univ. of St Andrews, St Andrews, 

KY16 8LB, UK 

2Centre for Research into Ecological and Environmental Modelling, Univ. of St 

Andrew, St Andrews, UK 

3Marine Biology and Ecology Research Centre, School of Biological and Marine 

Sciences, Univ. of Plymouth, Plymouth, UK 

4Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA NMFS, Seattle, 

USA 

5School of Applied Sciences, Abertay Univ., Dundee, UK 

 

Corresponding author: Debbie J. F. Russell, Sea Mammal Research Unit, Scottish 

Oceans Inst., Univ. of St Andrews, St Andrews, KY16 8LB, UK. E-mail: dr60@st-

andrews.ac.uk 

 

Decision date: 19-Dec-2019 

 

This article has been accepted for publication and undergone full peer review but has not been 

through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

[10.1111/oik.06853]. 

 

  

mailto:dr60@st-andrews.ac.uk
mailto:dr60@st-andrews.ac.uk


A
cc

ep
te

d
 A

rt
ic

le
 

‘This article is protected by copyright. All rights reserved.’ 
 

 

Abstract 

Rapid development of a successful foraging strategy is critical for juvenile survival, especially for naïve 

animals that receive no parental guidance. However, this process is poorly understood for many species. 

Although observation of early-life movements is increasingly possible with miniaturisation of animal-

borne telemetry devices, analytical limitations remain. Here, we tracked 29 recently-weaned, grey seal 

Halichoerus grypus pups from colonies in two geographically distinct regions of the United Kingdom. 

We analysed at-sea movements of pups throughout their initial months of nutritional independence to 

investigate the ontogeny of behaviour-specific (foraging and travelling) movement patterns. Using 

generalized hidden Markov models (HMMs), we extended the conventional HMM framework to account 

for temporal changes in putative foraging and travelling movement characteristics, and investigate the 

effects of intrinsic (sex) and extrinsic (environment) factors on this process. Putative foraging behaviour 

became more tortuous with time, and travelling became faster and more directed, suggesting a reduction 

in search scale and an increase in travel efficiency as pups shifted from exploration to an adult-like 

repeatable foraging strategy. Sex differences in movement characteristics were evident from colony 

departure, but sex-specific activity budgets were only detected in one region. We show that sex-specific 

behavioural strategies emerge before sexual size dimorphism in grey seals, and suggest that this 

phenomenon may occur in other long-lived species. Our results also indicate that environmental variation 

may affect the emergence of sex-specific foraging behaviour, highlighting the need to consider interacting 

intrinsic and extrinsic factors in shaping movement strategies of long-lived vertebrates. Moreover, 

comparing the behavioural state estimations to those of a conventional HMM (no variation in state-

specific movement parameters) revealed differences in the amount and location of foraging activity, with 

implications for spatial conservation management. Overlooking intrinsic and extrinsic variation in 

movement processes could distort our understanding of foraging ecology, population dynamics, and 

conservation requirements. 

 

Keywords: exploration-refinement, non-stationary model, ontogeny, optimal foraging theory, pinniped, 

state-dependent distributions   
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Introduction 

The period immediately following nutritional independence is one of the most vulnerable times in the life 

of an animal (Lindström 1999). Juvenile survival is a key determinant of population persistence, 

especially for long-lived species with protracted immaturity (Lindström 1999, Thomas et al. 2019).  

Although predation often poses a significant threat to newly-independent animals, their ability to learn 

how to locate food resources and to effectively exploit them is critical in determining their growth, 

survival and reproductive output (Sullivan 1989). Yet our understanding of the factors impacting the 

successful transition to independent feeding is limited. Starvation is a major cause of mortality for many 

species during this early life stage, and individuals have a finite window of opportunity in which to 

develop effective foraging strategies before energy reserves are depleted (Sullivan 1989, Orgeret et al. 

2016). This critical learning period is most pertinent for species that have no experience of foraging at the 

point of nutritional independence. The young of many species learn where and how to forage with 

guidance from experienced conspecifics (Radford and Ridley 2006, Rapaport and Brown 2008), and may 

be supported by continued provisioning as they begin to forage independently (Mendez et al. 2017). 

However, the young of species that are abandoned abruptly at the natal site are naïve, and must learn to 

exploit their environment without such guidance or support (Costa 1991). Such species provide a unique 

opportunity to investigate the development of effective foraging strategies without the confounding 

influence of adult behaviour. For marine diving species with a terrestrial breeding strategy, such as 

penguins, turtles and seals, young animals have the additional challenge of learning to forage in a new 

environment, within the physiological constraints of breath-hold diving (Boyd 1997). 

Optimal foraging theory (OFT) predicts that animals will minimise time in transit to, from, and between 

prey patches, and maximise time in profitable feeding areas (Stephens and Krebs 1986). However, an 

optimal foraging strategy requires knowledge of the spatial distribution of resources. For naïve animals, 

this knowledge is often acquired through early-life exploratory movements. According to the 

“exploration-refinement foraging hypothesis” (Votier et al. 2017), individuals transition from meandering 

exploratory movements to a more optimal movement strategy, exhibiting more directed repeatable trips to 

known foraging grounds, with age and experience. Osborne et al. (2013) found that young bumblebee 

Bombus terrestris foragers undergo this process of refinement within days of first emerging from the 

colony; individuals rapidly transition from looping exploratory flights to straighter travel paths once they 

learn the location of food resources. Early-life exploratory movements have also been reported in long-

lived species, such as seabirds (de Grissac et al. 2017) and phocid seals (McConnell et al. 2002). 
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However, for such species with delayed recruitment, this exploratory phase can be prolonged;  for 

example, Votier et al. (2017) found that immature (2-3 years old) northern gannets Morus bassanus 

exhibit lower foraging site fidelity and more exploratory movements between foraging areas than adults 

(≥ 5 years old). The authors hypothesised that delayed recruitment in other long-lived vertebrates may be 

driven by the time required to develop such memory-based foraging strategies (Votier et al. 2017).  

Many studies have investigated the ontogeny of foraging behaviour by comparing metrics (e.g. diet 

composition, stable isotopes, habitat use or activity budgets) between age classes in naïve long-lived 

vertebrates of diverse taxa, such as seabirds (Riotte-Lambert and Weimerskirch 2013, Grecian et al. 

2018), fishes (Kim et al. 2012) and marine mammals (Breed et al. 2011, Jeglinski et al. 2012). However, 

comparatively few studies have been able to examine ontogenetic changes throughout the critical early-

life period (rather than between age classes), and thus elucidate when and how such changes occur. This 

is particularly true with regards to changes in the characteristics of behaviour-specific (i.e. foraging or 

travelling) movements that are key components of broad-scale movement strategies (de Grissac et al. 

2017). Addressing this knowledge gap is crucial to quantifying foraging activity in naïve animals and 

understanding the factors that shape the emergence of behaviours and the development of optimal 

movement strategies. Investigating the timing and dynamics of the critical learning period is also key to 

identifying important foraging habitat, assessing the potential impacts of anthropogenic activity during 

this vulnerable life stage, and designing appropriate mitigation. 

Observing early-life behaviour in highly-mobile species is challenging due to high mortality rates and 

unpredictable dispersal (Hazen et al. 2012). However, miniaturisation of remote tracking technologies has 

allowed researchers to track large numbers of young animals of a growing range of species (Hazen et al. 

2012). Nevertheless, quantifying the behaviours of foraging and travelling, and how the associated 

movement characteristics change with age, remains a challenge. The development of analytical 

techniques that allow discrete behavioural states to be inferred from movement data has become an 

increasingly active area of research over the past two decades (Carter et al. 2016). Hidden Markov models 

(HMMs) are among the most commonly-used and flexible statistical tools available for such analysis 

(Langrock et al. 2012). HMMs are capable of identifying discrete movement patterns in the data, from 

which behavioural states can be inferred (Langrock et al. 2012). Large step lengths with small turn angles 

are commonly interpreted as travelling, and small step lengths with large turn angles as area-restricted 

search (ARS) associated with foraging activity (Carter et al. 2016). Moreover, HMMs have been used to 

investigate how covariates, including age class, affect the state transition probabilities (state-switching 
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behaviour) (Morales et al. 2004, Grecian et al. 2018). However, a limitation of the HMM framework 

conventionally applied to animal movement is that it assumes the characteristics (e.g. the distribution of 

step lengths and turn angles) of each movement state (e.g. foraging and travelling) are constant, and thus 

not affected by covariates. Conventional HMMs therefore cannot be used to quantify how behaviour-

specific movement strategies develop as a function of time and other covariates. 

In this study we employ an extension of the conventional HMM framework to overcome the limitations 

outlined above. The assumption of stationarity implicit within conventional HMMs is relaxed by 

explicitly modelling covariates acting on the movement characteristics of the behavioural states. Although 

this extension to conventional HMMs is well-established in the econometrics literature (Hamilton 1989), 

and is outlined in Zucchini, MacDonald and Langrock (2016), it has rarely been employed in ecology (but 

see McKellar et al. (2015)). Following the nomenclature of generalized linear models, such HMMs can be 

referred to as “generalized HMMs” (McClintock and Michelot 2018).  

Here, we use these generalized HMMs to investigate the ontogeny of behaviour-specific movement 

strategies in a naïve vertebrate predator, grey seal Halichoerus grypus pups. Adult grey seals are sexually 

dimorphic (Bonner 1989), and exhibit sex differences in diet (Beck et al. 2007) and activity budgets 

(Russell et al. 2015). Adult movement strategies are characterised by discrete foraging trips within shelf 

seas, commuting between preferred foraging grounds and terrestrial haul-out sites (Russell et al. 2015). 

Pups are abruptly abandoned on the natal colony after a brief (15-21 days) suckling period, and undergo a 

post-weaning fast (usually on land) of between nine and 40 days (Bennett et al. 2007, Noren et al. 2008). 

Recruitment to the breeding population occurs after a prolonged period of immaturity (females: ~5 years, 

males: ~10 years) (Harwood and Prime 1978). Starvation is a major cause of post-weaning mortality 

(Baker et al. 1998), and first year survival is typically low and variable (Hall et al. 2001), exerting a 

strong influence on population dynamics (Thomas et al. 2019). Pups show rapid changes in trip duration 

and dive behaviour within two months of first leaving the colony, but the timing and scale of changes 

varies between the sexes and regional sub-populations (Bennett et al. 2010, Carter et al. 2017). The initial 

months of life after nutritional independence are clearly critical for the development of foraging skills, but 

the ontogeny of foraging movement strategies from weaning remains unstudied.  

Using location and dive data from recently-weaned pups tagged on breeding colonies in two distinct 

regions of the United Kingdom (UK; Northeast Scotland, West Wales), we examine the movement 

characteristics of putative foraging and travelling throughout the first four months of nutritional 

independence at sea. The generalized HMM approach allows us to test whether (i) movement strategies 
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become more adult-like with time, and if such changes are affected by (ii) intrinsic (sex) and (iii) extrinsic 

(environment) covariates. Finally, (iv) we test if inferred foraging locations differ from those of a 

conventional HMM (commonly used to infer behaviour from animal movement data), which assumes a 

single stationary distribution for each behavioural state through time and across sample groups. 

 

Material and methods 

Telemetry data 

We deployed Fastloc® GPS phone tags (SMRU Instrumentation, St Andrews, UK) on 29 grey seal pups 

at five UK breeding sites in 2009 and 2010 (Table 1; Supplementary material Appendix 1 Fig. A1). 

Recently-weaned pups were captured before they left the natal colony and devices were glued to the fur at 

the base of the skull (Carter et al. 2017). 

Devices attempted to obtain a location estimate every 20 min. We identified and excluded erroneous GPS 

location estimates using the protocol from Russell et al. (2015). In addition to location fixes, devices 

transmitted two-hourly summaries of behavioural data, beginning at midnight (GMT), including 

percentage of time spent diving, as determined by the integrated pressure sensor. A dive started when the 

sensor recorded depth > 1.5 m for > 8 s, and ended when it recorded a depth of < 1.5 m. We interpolated 

location fixes to a constant time step of 2 h, synchronised with the end of each summary interval. Any 

interval with missing summary data, or for which there was a gap > 6 h between the observed location 

fixes surrounding an interpolated location, was flagged as “unreliable”. 

We calculated time since leaving colony (integer days) for each 2 h time interval. Tag transmission period 

varied among individuals (34 to 337 days). We clipped data to 120 days after first leaving the colony to 

ensure a comparable sample size for all sex-region groups throughout the time series (Fig. 1, Table 1). 

Grey seal pups in the UK exhibit regional differences in the scale of at-sea movement during their initial 

months of life (Carter et al. 2017). We therefore grouped adjacent colonies into two geographically 

distinct regions (Northeast Scotland and West Wales) to investigate regional differences in the ontogeny 

of behaviour-specific movement characteristics (Table 1). 

 

Hidden Markov model 

(i) State assignment 
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Previous work on grey seals has shown that HMMs can be applied to horizontal tracking data to 

effectively identify two discrete at-sea movement states (Breed et al. 2011). Models typically identify two 

distributions of movement metrics; high step lengths with low turn angles, which are commonly 

attributed to travelling behaviour, and low step lengths with high turn angles, which are commonly 

attributed to foraging (Carter et al. 2016). However, for diving predators, limited horizontal movements 

during prolonged resting at the surface may be conflated with ARS if only location data are used to 

determine movement states (McClintock et al. 2013). Grey seals dive to forage and travel, but also spend 

prolonged periods at the surface (Russell et al. 2015), most likely to rest and digest (Sparling et al. 2007). 

Following Russell et al. (2015), we distinguished between time intervals (𝑡) spent at the surface, or 

hauled-out, (resting state; 𝑍𝑡 = 𝑅) and diving (foraging and travelling states; 𝑍𝑡 ∈ {𝐹, 𝑇𝑟}) using the 

proportion of a time interval spent diving (ω𝑑,𝑡) from tag summary data. Seals must periodically surface 

to breathe, thus pups spent a maximum of 88.8% of any 2 h time interval underwater. Based on previous 

work, we set the threshold for an interval to be assigned to diving states using a majority rule at half of the 

maximum possible proportion of time spent diving, such that 𝑍𝑡 = 𝑅  when ω𝑑,𝑡 < 0.444  and 𝑍𝑡 ∈

{𝐹, 𝑇𝑟} when ω𝑑,𝑡 ≥ 0.444 (see Russell et al. (2015) for more details). 

We fitted a three state multivariate, discrete-time HMM (Zucchini et al. 2016), with resting as a “known 

state” (McClintock and Michelot 2018), and attributed the remaining time intervals with low step lengths 

(𝑠𝑡; the Euclidian distance travelled in a 2 h time interval) and high turn angles (φ𝑡) to foraging, and 

intervals with high step lengths and low turn angles to travelling, as in previous studies (McClintock et al. 

2013, Russell et al. 2015). Following McClintock et al. (2017), we assumed step length 𝑠𝑡|𝑍𝑡 = 𝑧 ∼

Gamma(𝜇𝑧 𝜎𝑧⁄ , 𝜎𝑧) with the state-dependent mean step parameter 𝜇𝑧 > 0 and shape parameter 𝜎𝑧 > 0 

for 𝑍𝑡 ∈ {𝑅, 𝐹, 𝑇𝑟} . For turn angle, we assumed φ𝑡|𝑍𝑡 = 𝑧 ~ wCauchy(0, γ𝑧) : a wrapped Cauchy 

distribution with mean zero and state-dependent directional persistence parameter 0 < γ𝑧 < 1 for 𝑍𝑡 ∈

{𝑅, 𝐹, 𝑇𝑟}. The mean angle parameter was set to zero to maintain biological interpretability, with the 

movement model limited to a correlated random walk (as the concentration parameter goes to 1) or a 

simple random walk (as the concentration parameter goes to zero). Following Russell et al. (2015), states 

were assigned for “unreliable” intervals based solely on the Markov property of the state transition 

probabilities, and not the step lengths or turn angles. State assignments for “unreliable” intervals were 

excluded from subsequent analyses. All analyses were performed in R version 3.5.0 (R Core Team; 2018) 

using a bespoke R package; an early version of momentuHMM (McClintock and Michelot 2018), 
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modified to allow the inclusion of an asymptote to state-dependent covariate effects (see below; (iii) 

Generalized movement HMM). 

 

(ii) Conventional movement HMM 

We fitted the HMM described above, allowing covariates to affect the state transition probabilities, but 

not the state-dependent probability distribution parameters of the movement characteristics (𝑠𝑡 , φ𝑡). The 

most highly-parameterised (“maximal”) model comprised a three-way interaction of covariates – time 

since leaving colony (continuous), region (two level factor) and sex (two level factor) - on the state 

transition probabilities (Supplementary material Appendix 4 Table A1). In other words, within the 

maximal conventional model, the covariates (including time) could affect the probability of switching 

between states, but not the distribution of movement metrics that inform the states, which remain 

stationary. For details on implementation of covariate effects, see Supplementary material Appendix 2. 

To arrive at the minimal adequate model, we conducted backwards model selection (threshold for 

covariate exclusion ∆AIC < 2 (Burnham and Anderson 2002)). The most probable state sequence was 

then decoded using the Viterbi algorithm (Zucchini et al. 2016). We checked that model assumptions 

were met by visual inspection of pseudo-residual plots ((Zucchini et al. 2016); Supplementary material 

Appendix 3), and verified that state characteristics were biologically interpretable in line with our 

observations of the data. 

 

(iii) Generalized movement HMM 

To test the impact of including covariate effects on the state-dependent probability distribution parameters 

for step lengths and turn angles, we fitted a generalized HMM, allowing covariates to affect both the state 

transition probabilities (as in the conventional HMM), and the state-dependent probability distribution 

parameters of the movement characteristics ( 𝑠𝑡 , φ𝑡 ). The maximal model comprised a three-way 

interaction of covariates – time since leaving colony, region and sex - on; (i) the state transition 

probabilities, (ii) the distribution of putative foraging and travelling mean step lengths (𝜇𝑧 ∈ {𝐹,𝑇𝑟}), and 

(iii) the foraging and travelling directional persistence parameter (γ𝑧 ∈ {𝐹,𝑇𝑟}) (Supplementary material 

Appendix 4 Table A1). We fitted this maximal model with an asymptote on each of 𝜇𝑧 ∈ {𝐹,𝑇𝑟}  and 

γ𝑧 ∈ {𝐹,𝑇𝑟} (for implementation see Supplementary material Appendix 2). This was done to account for the 

possibility that state-specific movements may converge on an optimum (i.e. adult-like behaviour) within 
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the study period. This assumption was later tested during model selection by removing the asymptote. As 

with the conventional HMM, we conducted backwards model selection to arrive at a minimal adequate 

model, and decoded the states for each 2 h time interval using the Viterbi algorithm (Zucchini et al. 

2016). As resting was a known state, intervals were not assigned by the HMM in a probabilistic manner 

(Russell et al. 2015). Therefore, covariate effects on resting state-dependent parameters did not affect 

state assignment and were not investigated here. We tested if the proportion of state-assignments inferred 

as foraging (for the entire dataset, and at sex-region group level) was significantly different between the 

minimal adequate conventional and generalized HMMs using two-sample tests for equality of proportions 

(i.e. binomial tests). 

 

Results 

In both the conventional and generalized HMMs (three state models) the model converged on two 

movement states (besides the known resting state), which, based on the movement parameters, we 

inferred as foraging, and travelling (see “state assignment” in Material and methods section).  

 

Conventional movement HMM 

The minimal adequate conventional HMM included covariate effects of time since leaving colony, sex 

and region in a three-way interaction on the state transition probabilities (Supplementary material 

Appendix 4 Table A1). The state transition probabilities changed as a function of time since leaving 

colony. However, the strength and direction of this change was not equal among sex-region groups. The 

probability of remaining in a foraging state (i.e. duration of foraging bouts) increased over time for Welsh 

females from 0.69 (95% CI: 0.65 – 0.73) to 0.85 (95% CI: 0.83 – 0.87), while Welsh males showed a 

slight decline from 0.74 (95% CI: 0.7 – 0.78) to 0.67 (95% CI: 0.63 – 0.71) (Supplementary material 

Appendix 6 Fig. A5). In Scottish pups, the probability of remaining in a foraging state was stable ~0.7 

(95% CI: 0.66 – 0.74), and no significant sex difference in foraging state transition probabilities was 

detected. The probability of remaining in a given state was > 0.6 throughout the time series for all three 

states. 

Disregarding “unreliable” time intervals (n = 5183; 15.2%), the activity budget (proportion of time spent 

in a given state) for foraging was 0.4 for the entire dataset, compared with 0.33 for travelling and 0.27 for 

resting, based on the minimal adequate conventional HMM. 
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Generalized movement HMM 

The minimal adequate generalized HMM included covariate effects of time since leaving colony, sex and 

region in a three-way interaction on the; (i) mean step length, (ii) directional persistence parameter and 

(iii) state transition probabilities (Supplementary material Appendix 4 Table A1). An asymptotic 

relationship was retained for the effect of time since leaving colony on mean step length, but not on 

directional persistence. A full table of parameter estimates is presented in Supplementary material 

Appendix 5 Table A2. Parameter values given below are population means followed by lower and upper 

95% confidence intervals in parentheses. 

The mean speed (derived from step length) associated with inferred foraging remained constant in the 

foraging state for all sex-region groups, at around 0.31 m s-1 (0.28 - 0.32), but increased with time since 

leaving colony for travelling (Fig. 1a-d). The magnitude of increase in speed differed by sex in a region-

specific manner. For females in both regions, mean speed of putative travelling intervals began at ~0.67 

m s-1 (NE Scotland: 0.57 – 0.79; W Wales: 0.41 – 0.91) and increased to ~1 m s-1 (NE Scotland: 0.88 – 

1.1; W Wales: 0.86 – 1.29) by the end of the time series (Fig. 1b,d). In contrast, mean travelling speed for 

males increased from ~0.72 m s-1 (NE Scotland: 0.65 – 0.75, W Wales: 0.62 – 0.85) to 0.84 m s-1 (0.79 – 

0.9) in NE Scotland, but remained fairly constant at 0.76 m s-1 (0.63 – 0.89) in W Wales (Fig. 1a,c). 

The directional persistence of both putative foraging and travelling movements changed significantly with 

time since leaving colony. Putative foraging movements became more tortuous over time for all sex-

region groups; the wrapped Cauchy distribution directional persistence parameter γ𝐹 (scaled from 0 to 1) 

decreased over time for foraging intervals (Fig. 1e-h). In both regions, females showed greater changes 

than males. For males in both regions, γ𝐹 was ~0.33 (NE Scotland: 0.29 – 0.42; W Wales: 0.17 - 0.47) 

upon leaving the colony, and declined to 0.25 (95% CI: 0.18 – 0.31) in NE Scotland, and 0.17 (0.06 - 0.3) 

in W Wales by the end of the time series (Fig. 1e,g). Upon leaving the colony, putative foraging 

movements of Scottish females were more directionally persistent than those of males, at 0.55 (0.39 – 

0.71), but declined to a similar value of 0.3 (0.14 – 0.46) by the end of the time series (Fig. 1f). Putative 

foraging movements of Welsh females were the most directionally persistent of all sex-region groups at 

the beginning of the time series, at 0.79 (0.54 – 1) and showed the steepest decline, to 0.14 (0 – 0.36) 

(Fig. 1h). However, 95% CIs were much wider for Welsh females than for other sex-region groups. 

Putative travelling movements became more directed with time since leaving the colony for all sex-region 

groups, indicated by an increase in γ𝑇𝑟 values (Fig. 1e-h). For Scottish pups, γ𝑇𝑟 was ~0.5 (males: 0.45 – 

0.55; females: 0.42 – 0.65) when pups left the colony and increased to 0.75 (0.71 – 0.79) for males, and 
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0.8 (0.73 – 0.87) for females by the end of the time series (Fig. 1e-f). Putative travelling movements of 

Welsh pups were less directed than those of Scottish pups at the beginning of the time series, at 0.29 (0.19 

– 0.38) for males and 0.36 (0.13 – 0.59) for females, but  γ𝑇𝑟 values increased to 0.65 (0.55 – 0.75) for 

males (Fig. 1g) and 0.72 (0.51 – 0. 92) for females (Fig. 1h). 

Covariate effects on state transition probabilities were comparable to those of the minimal adequate 

conventional HMM. The probability of remaining in a foraging state increased over time for Welsh 

females from 0.65 (95% CI: 0.61 – 0.69) to 0.85 (95% CI: 0.83 -0.87), while Welsh males showed a 

slight decline from 0.74 (95% CI: 0.7 – 0.78) to 0.67 (95% CI: 0.63 – 0.71) (Fig. 2a). For Scottish pups, 

there was a marginal sex difference in the probability of remaining in a foraging state, but confidence 

intervals overlapped. For Scottish females, probability of remaining in a foraging state showed a slight 

decline from 0.74 (95% CI: 0.70 – 0.78) to 0.72 (95% CI: 0.69 – 0.75), while Scottish males showed an 

increase from 0.67 (95% CI: 0.61 – 0.74) to 0.72 (95% CI: 0.67 – 0.76) (Fig. 2b). The probability of 

remaining in a given state was > 0.6 throughout the time series for all three states. 

Disregarding “unreliable” time intervals (n = 5183; 15.2%), the activity budget for foraging was 0.44 for 

the entire dataset, compared with 0.29 for travelling and 0.27 for resting, based on the minimal adequate 

generalized HMM. Example state predictions from the generalized HMM are shown in Fig. 3. 

 

Comparison between conventional and generalized HMMs 

According to the AIC score, the minimal adequate generalized HMM was vastly superior to the minimum 

adequate conventional HMM (Supplementary material Appendix 4 Table A1; ΔAIC = -1418.2). The 

estimated activity budgets differed between the two models; 8.4% (n = 1770) of non-resting state 

assignments conflicted for the entire dataset (range for individuals: 0.8% - 16.2%). For the entire dataset, 

the proportion of time intervals attributed to foraging by the generalized HMM was significantly higher 

than for the conventional HMM (binomial test; 𝜒1
2 = 112.83, p < 0.001). Moreover, the difference was not 

equal for all sex-region sample groups. Estimated activity budgets for foraging were significantly higher 

for the generalized HMM in all sex-region groups except Welsh females (Fig. 4a: NE Scotland males; 

binomial test; 𝜒1
2 = 65.67, p < 0.001, NE Scotland females; 𝜒1

2 = 114.82, p < 0.001, W Wales males; 𝜒1
2 = 

54.67, p < 0.001, W Wales females; 𝜒1
2 = 7.08, p = 0.996). On average, the conventional HMM recorded 

5.9% fewer foraging intervals than the generalized HMM (range for individuals: 16% fewer - 6.4% 

more). Intervals that were assigned as travelling by the conventional model, but as foraging by the 

generalized model, were often clustered in space (Fig. 4b). 
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Model computation 

Total computation time required to fit the HMMs was 114 mins for the maximal generalized model 

(Table A1), and 46 mins for the maximal conventional model (Table A1) on a desktop computer with an 

Intel® CoreTM i1-6700 3.4 GHz processor and 32 GB of RAM. 

 

Discussion 

Ontogenetic changes in movement strategies 

In this study, we examined changes in foraging and travelling movement characteristics with age in a 

highly-mobile vertebrate by combining animal-borne telemetry with a generalized HMM technique. Grey 

seal pup putative travelling behaviour became faster and more directed over the first four months after 

leaving the colony (Fig. 1), indicating an increase in travel efficiency. Concurrently, putative foraging 

movements became more tortuous, suggesting a decrease in the spatial scale of ARS. Mean travel speed 

reached by female pups in this study after four months (~1 m s-1) is comparable that of adult grey seals 

(0.92 m s-1; Russell et al. (2015)). The increase compared to the point of leaving the colony was ~0.3 m s-

1; equivalent to an extra third of a body length per second (Hall and McConnell 2007). A study using 

telemetry data showed that grey seals of mixed age classes (from 5 months old to adults) had similar 

movement characteristics across age groups on outbound segments of foraging trips (Breed et al. 2011). 

By quantifying the changes in foraging and travelling movements of pups throughout their initial months 

of life, our study suggests that they switch from exploratory movements to directed foraging trips, 

supporting the exploration-refinement foraging hypothesis (Votier et al. 2017). Moreover, despite a 

protracted period of immaturity (≥ 5 years), grey seal pups demonstrate a relatively rapid acquisition of 

adult-like behaviour.  

In addition to gaining experience, phocid seals undergo substantial changes in body composition after 

nutritional independence (Hall and McConnell 2007). Profound physiological development occurs during 

the initial months of life; oxygen storage capacity and muscle strength improves (Noren et al. 2005), and 

the ratio of blubber to denser lean mass decreases (Hall and McConnell 2007). This physiological 

development may be related to an observed rapid increase in maximum dive duration (Bennett et al. 

2010) and proportion of the dive spent at foraging depth (Carter et al. 2017, Orgeret et al. 2018, Hamilton 
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et al. 2019). Increased time at depth likely leads to higher prey encounter rates, which may be a feature of 

the temporal changes in putative foraging movement characteristics reported here. 

We suggest that rapidly developing knowledge of foraging areas, and optimising travel paths to, from and 

between these areas, during the initial months of nutritional independence is likely a critical factor 

influencing survival and long-term fitness in grey seals. Starvation is a major cause of mortality for 

weaned grey seal pups, but not for adults (Baker et al. 1998). Although predation is a limiting factor on 

survival of many newly-independent animals, such as cheetahs Ancinonyx jubatus (Laurenson 1994) and 

passerine birds (Sullivan 1989), and predation events on weaned grey seal pups have been recorded in the 

UK (Brownlow et al. 2016), there is little evidence that predation has a population-level impact on first-

year survival in UK grey seals. Indeed, an age-structured Bayesian model revealed that the grey seal 

population in Orkney reached apparent carrying capacity in the early 2000s, driven by density-

dependence acting on pup survival (Thomas et al. 2019), likely through processes at-sea related to food 

availability (Russell et al. 2019). Furthermore, it is estimated that newly-weaned pups have an average of 

36 days to feed successfully before their protein reserves are critically depleted (Bennett et al. 2007).  

Votier et al. (2017) hypothesised that protracted immaturity in northern gannets, and potentially other 

long-lived species may be attributable to the time required for individuals to fully develop memory-based 

foraging strategies. However, although grey seals undergo a prolonged immature phase (≥ 5 years), the 

changes in behaviour-specific movement characteristics reported here suggest a transition from 

exploration towards a more optimal, memory-based foraging strategy (i.e. adult-like foraging trips) within 

four months of nutritional independence. Therefore, the development of memory-based foraging 

strategies is unlikely to be a driver of protracted immaturity in grey seals. Although the broad-scale 

behavioural patterns and movement characteristics at four months of independence resemble those of 

adults, it is likely that foraging efficiency is not yet fully developed. For example, young grey seals may 

continue to improve their prey selection, prey capture ability and diving capacity throughout immaturity. 

Unlike many seabirds, grey seals undergo large increases in body size with age (adult males and females 

are ~5.8 and ~3.8 times heavier than newly-weaned pups, respectively (Bonner 1989)). The time required 

to develop the foraging efficiency necessary to support breeding mass is therefore potentially a key driver 

of delayed recruitment in grey seals, and possibly for other species with a large absolute range in body 

size between young and adults. Where possible, future studies of movement ontogeny should seek to 

combine high resolution biologging data (such as accelerometry) with location data to quantify how fine-

scale foraging behaviour (i.e. prey capture) develops alongside broad-scale movement strategies (Orgeret 
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et al. 2018). Moreover, quantifying the development of movement strategies in the context of adult 

behaviour will help to elucidate drivers of delayed recruitment in long-lived species. 

 

Sex differences in ontogeny 

The generalized HMM revealed sex differences in the development of putative foraging and travelling 

movement strategies for grey seal pups in both regions (Fig. 1), and sex differences in activity budgets of 

Welsh pups (Fig. 2). Sex-specific foraging behaviour is common in adult long-lived vertebrates, such as 

non-human primates, terrestrial herbivores, birds and pinnipeds (Ruckstuhl and Neuhaus 2005). In social 

species, the development of sex-specific foraging in young animals is often attributed to cultural 

transmission from same-sex adult conspecifics (Lonsdorf et al. 2004). For example, young female 

chimpanzees Pan troglodytes spend longer alongside their mothers developing foraging skills, while 

young males invest more time in play (Lonsdorf et al. 2004). The level of conspecific interaction at-sea is 

unknown for most pinniped species, therefore, the role of cultural transmission remains ambiguous. 

However, there is evidence that young grey seals are competitively excluded from the best foraging areas 

by older conspecifics (Breed et al. 2013). The onset of sex differences seen here is therefore unlikely to 

be attributable to learning by association with same-sex adult conspecifics. For many non-social species, 

sex-specific behaviours emerge with differences in body size and/or energetic demands of reproduction 

(Ruckstuhl and Neuhaus 2005). However, studies of grey seal pups have revealed little or no sex 

differences in mass or body composition at weaning or departure from the colony (Bowen et al. 1992, 

Bennett et al. 2010). Here, sex-specific foraging behaviour therefore precedes overt sexual size 

dimorphism and reproduction.  

Previous studies have shown that female grey seals in both the northwest and northeast Atlantic 

populations spend more time foraging than males (Breed et al. 2011, Russell et al. 2015), and Carter et al. 

(2017) found sex differences in the diving behaviour of recently-weaned pups. Our results show that sex-

specific ontogenetic trends in foraging and travelling behaviour emerge soon after departing the colony. 

Females showed greater changes in behaviour-specific movement characteristics than males over time. In 

Wales, females consistently showed a higher probability of remaining in a foraging state than males, 

indicative of longer foraging bouts (Fig. 2a). Breeding grey seal females prioritise accumulation of lipid 

mass which they must convert into milk and also use to sustain their own metabolic needs while 

provisioning a pup, whereas males preferentially put on lean mass throughout the year in order to 

compete effectively for females during the breeding season (Beck et al. 2003). The sex differences 
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present in pup behaviour may be driven by sex-specific prey preferences that underpin different metabolic 

strategies in breeding adults. Sex differences in energy storage strategies have been described in pre-

weaned otariids (Arnould et al. 1996) and juvenile phocids (Kelso et al. 2012). We suggest that female 

pups may adopt a risk-averse foraging strategy, targeting reliable but, possibly low-yield, environments to 

prioritise survival and fulfilment of their reproductive potential. Conversely, male pups may adopt a 

riskier strategy, investing more time in searching out productive foraging grounds to maximise food 

intake and growth, and ultimately achieve a large body size to compete for females. For grey seals in the 

UK, sex-specific ontogenetic trends may explain an observed sex difference in first year survival 

probability; for a given body condition at weaning, North Sea females are predicted to be > 3 times more 

likely to survive their first year than males (Hall et al. 2001). We suggest that further research is required 

to determine the onset of sex-specific foraging strategies in long-lived non-social species, and the impact 

this may have on survival probability and population dynamics. 

 

Effect of region on sex-specific foraging strategies 

Sex differences in activity budgets were not evident in Scottish pups, suggesting that sex-specific 

ontogenetic changes are not driven solely by physiological differences, but are likely also influenced by 

environmental factors. Similar regional sex differences in foraging behaviour have been reported for adult 

Weddell seals Leptonychotes weddellii (Langley et al. 2017), but a causal mechanism has not been 

identified. Such behavioural plasticity might be driven by regional and seasonal differences in the 

diversity of available foraging habitat or prey types. In this case, the areas used by Scottish pups, 

encompassing much of the north-western North Sea, represent a more homogeneous environment than the 

Celtic and Irish Seas off the coast of West Wales (Trevail et al. 2019) (Supplementary material Appendix 

6 Fig. A5). Alternatively, sex differences in sensitivity to abiotic parameters, such as extreme weather, 

may result in region-specific sex differences in behaviour. The role of the environment in shaping sex-

specific behaviour has been well documented in terrestrial mammals (Conradt et al. 2000). For example, 

it has been shown that sex differences in sensitivity to strong winds and low temperatures influence the 

winter distributions of male and female red deer Cervus elaphus (Conradt et al. 2000). This phenomenon 

is less well-studied in marine vertebrates, but a recent study of two long-lived sexually dimorphic seabird 

species demonstrated sex-specific influences of climate perturbations on survival probability as a result of 

sex-specific foraging strategies (Gianuca et al. 2019). We argue that more mechanistic research is 

required to elucidate the role of extrinsic factors in shaping sex-specific behavioural strategies in young 
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animals. Studying individuals during early life, when sensitivity to environmental perturbations may be 

most acute, is likely key to understanding the consequences of environmental change on species 

demographics and population dynamics. 

 

Methodological implications 

Here we have demonstrated an extension of HMMs to investigate the development of behaviour-specific 

movement patterns. Not only was the generalized HMM overwhelmingly favoured to a conventional 

HMM by model selection (Supplementary material Appendix 4 Table A1), it revealed new ecological 

insights (discussed above) that would not have been detected within the conventional framework. 

Moreover, we have shown that not considering intrinsic and extrinsic influences on behaviour-specific 

movements can impact state decoding, which may lead to inaccurate estimation of activity budgets and 

foraging locations (Fig. 4). In our study, up to 16% fewer time intervals were inferred as foraging with the 

conventional HMM. Conventional HMMs are increasingly used to identify important foraging areas, and 

inform conservation management (e.g. Maxwell et al. (2011), van Beest et al. (2019)). Not accounting for 

covariate effects may therefore translate into sub-optimal designation of conservation resources where 

foraging areas are misclassified or under/over-estimated. Such inaccuracies may be especially 

problematic if important foraging habitat is overlooked, particularly for vulnerable life stages. 

In addition to ontogenetic processes, many other covariates may influence the characteristics of 

behaviour-specific movements. For example, an individual’s foraging or travelling movement patterns 

may vary as a function of intrinsic (e.g. sex, reproductive status and energetic requirements) (Pirotta et al. 

2018), or extrinsic factors (e.g. aspects of the physical environment and seasonal prey distribution) 

(Palacios et al. 2019). Until now, animal movement HMMs typically assume that foraging characteristics 

will be the same among sample groups (e.g. males and females (McClintock et al. 2013)). Here we have 

demonstrated a case in which this assumption is violated. Moreover, the impact of environmental 

covariates on animal movement is of particular research interest (Hays et al. 2016, Cox et al. 2018a), and 

generalized HMMs will be useful to address such questions. Although conventional HMMs can uncover 

how habitat features affect behavioural state switching (Morales et al. 2004, Grecian et al. 2018, van 

Beest et al. 2019), incorporating extrinsic covariate effects on state-dependent parameters will allow a 

more mechanistic understanding of how animals optimise their movement strategies in response to 

environmental stimuli.  
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In the current study, the aim was to investigate broad-scale ontogenetic trends in movement 

characteristics at the sex and region level. Fine-scale spatial covariates that could also affect movement 

characteristics (e.g. tidal currents, habitat type) were not considered in addition to ontogeny to avoid 

unmanageable model complexity. Given the considerable variation in the areas and habitats used by 

individuals (Supplementary material Appendix 6 Fig. A5), any influence of such factors would generate 

“noise” rather than directional impacts that could be confounded with ontogeny. Season is the only 

extrinsic factor with a potential temporal influence on state-specific movement parameters. However, we 

would not necessarily expect any such influence to be monotonic (as seen in Fig. 1). Additionally, due to 

regional differences in pupping date, the pups were tagged in different seasons in the two regions. Given 

that the time covariate was input as days since leaving colony (rather than Julian day), if there were a 

seasonal component to the temporal trend, we would expect to see mismatched rather than the 

comparable trends we observe here between the two regions. Thus, the observed temporal trends can only 

be driven by ontogenetic changes relating to age and/or experience of the pups, as this is a common 

temporal feature between the two regional datasets. 

There are various considerations when inferring behavioural states using HMMs, particularly (1) the 

temporal resolution on which to infer states, (2) the incorporation of individual and group-level variation 

in state-specific movements, and (3) the time taken to fit such models. Firstly, the temporal resolution on 

which states are inferred (here 2 h) was selected based on multiple factors including data resolution, 

computational burden, and biological rationale. While pups may occasionally exhibit more than one 

behaviour within a 2 h interval, the high probability of remaining in a given state reported here for all sex-

region groups is evidence that pups predominantly exhibit one behavioural mode for > 2 h at a time. 

Furthermore, analysis of grey seal dive data has revealed that dives are typically clustered in behaviour-

specific bouts, and the average bout length is 3.4 ± 0.5 h (Austin et al. 2006).  

Secondly, movement models should ideally incorporate both individual and group-level variation. Here, 

we incorporated group-level variation (partial-pooling (Zucchini et al. 2016)), associated with sex and 

region. While inclusion of discrete-level random effects on state transition probabilities has recently been 

demonstrated in animal movement HMMs (e.g. DeRuiter et al. (2017), Isojunno et al. (2017)), this is still 

a developing area of research, and we are not aware of any study that implements random effects on state-

dependent parameters. Currently, including random effects on state-dependent parameters in addition to 

fixed effects would lead to a prohibitive level of model complexity. The use of regular time intervals and 
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clipping the time series to 120 days ensured that each individual contributed a similar amount of data, and 

results could not be driven by data rich individuals.  

Lastly, prior to the availability of accessible software for implementing frequentist HMMs (i.e. 

moveHMM (Michelot et al. 2016)), such models were often fitted in a Bayesian framework and 

computational demand prohibited the use of a high sample size of individuals. In our study, computation 

time, though not prohibitive, was substantially greater for the generalized HMM (114 mins) than for the 

conventional HMM (46 mins). Notwithstanding the added computational burden, with the recent new R 

package momentuHMM (McClintock and Michelot 2018), model formulation for even complex 

generalized HMMs is now relatively straightforward for non-specialists. Future studies combining 

tracking data with additional metrics of foraging activity (e.g. derived from accelerometer data) would be 

useful to assess the accuracy of behavioural inferences from conventional and generalized HMMs 

respectively, and determine the impact of different temporal resolutions on the quantification of 

behaviours (Cox et al. 2018b). 

Conclusions 

Our study quantifies rapid changes in foraging and travelling movement characteristics in a naïve long-

lived vertebrate with delayed recruitment. Our results suggest that grey seal pups develop adult-like 

movement strategies within four months of departing the natal colony. Moreover, the ontogenetic process 

is influenced by sex, before the onset of significant sexual size dimorphism. Our findings show that the 

emergence of sex-specific behaviour in long-lived species may not always be driven by cultural 

transmission or sex differences in body size. Instead, we hypothesise that sex differences in early-life 

metabolic strategies may lead to sex-specific foraging behaviour in young animals. Furthermore, we 

found that the emergence of sex-specific behaviours appears to be influenced by region. We call for 

further research to elucidate the role of the environment in shaping such sex-specific ontogenetic trends, 

and understand the potential consequences of environmental change on species demographics and 

population dynamics. Our work suggests that overlooking the impact of intrinsic and extrinsic factors on 

foraging behaviour may distort our understanding of foraging ecology, and have negative consequences 

for spatial conservation management where protected areas are designed based on inference of foraging 

areas from conventional HMMs. Such consequences may be particularly acute for young animals. The 

generalized HMM approach demonstrated here can be used to provide fresh insights into foraging 

ecology and, more broadly, help to maximise the potential of animal movement datasets. 
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Figure Legends 

Figure 1. Covariate effects on state movement parameters. Green denotes the movement state 

inferred as travelling; purple denotes the movement state inferred as foraging. Solid lines 

represent sample mean estimates of the effects of time since leaving colony, with associated 

95% confidence intervals (shaded areas). Horizontal dashed lines show conventional HMM 

model parameter estimates. Horizontal axis rug plots show the distribution of data and 

associated numbers indicate pup sample size. Speed values are derived from mean step length 

parameter. Directional persistence parameter values indicate path straightness (scaled from 0 

to 1). 
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Figure 2. Significant sex differences in activity budgets were present in Welsh pups (a) but not 

Scottish pups (b). Welsh females (red) showed greater persistence in foraging activity than 

males (blue) with age, indicated by an increased probability of remaining in the foraging state. 

Solid lines are sample mean responses, shaded areas are 95% confidence intervals. 
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Figure 3. Example generalized HMM state predictions. State assignments for a Scottish pup (a), 

and a Welsh pup (b) during the initial 120 days after leaving the colony. 
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Figure 4. Comparison of generalized and conventional HMM outputs. The difference in 

proportion of total non-resting time intervals (n = 21,062) inferred as foraging between the 

generalized and conventional models is shown in (a). The conventional model estimated 

significantly less putative foraging for all sex-region groups apart from Welsh females (“***” 

indicates p < 0.001). Thick black lines are median values, black dots are sample means, boxes 

show interquartile ranges (IQRs), lines show minimum and maximum values, open circles are 

outliers (> 1.5*IQR <). State assignments for a Scottish pup are shown in (b). Gold points are 

intervals that were assigned as foraging by the generalized HMM, but as travelling by the 

conventional HMM. Potentially important foraging areas may be under-estimated or overlooked 

by not accounting for covariate effects on state-dependent movement parameters (dashed 

ovals). 
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Table Legend 

Table 1. Grey seal pup sample size by tagging site and year. Tag deployment sites were assigned to one of 

two distinct geographic regions (West Wales and Northeast Scotland). Mean tag duration is shown for 

each sex-region group, numbers in parentheses indicate the sample size transmitting data throughout the 

time series (120 days). 

 

tag deployment site (year) 

no. tagged seals 

mean tag duration ± SD 

(no. tags ≥ 120 days)  

 

region f m total f m 

W Wales 

Bardsey (2009) 1 0 1 

165.7 ± 86.4 

(6) 

152.3 ± 105.5 

(4) 

Anglesey (2009) 1 2 3 

Anglesey (2010) 4 1 5 

Ramsey (2010) 3 4 7 

NE Scotland 
Muckle Green Holm (2010) 3 3 6 148 ± 58.5 

(5) 

132.2 ± 76.5 

(3) Stroma (2010) 5 2 7 

 total: 17 12 29   

 

 


