ORCID

Abstract

Despite extensive investigations, an efective treatment for sepsis remains elusive and a better understanding of the infammatory response to infection is required to identify potential new targets for therapy. In this study we have used RNAi technology to show, for the frst time, that the inducible lysophosphatidylcholine acyltransferase 2 (LPCAT2) plays a key role in macrophage infammatory gene expression in response to stimulation with bacterial ligands. Using siRNA- or shRNA-mediated knockdown, we demonstrate that, in contrast to the constitutive LPCAT1, LPCAT2 is required for macrophage cytokine gene expression and release in response to TLR4 and TLR2 ligand stimulation but not for TLR-independent stimuli. In addition, cells transfected to overexpress LPCAT2 exhibited increased expression of infammatory genes in response to LPS and other bacterial ligands. Furthermore, we have used immunoprecipitation and Western blotting to show that in response to LPS, LPCAT2, but not LPCAT1, rapidly associates with TLR4 and translocates to membrane lipid raft domains. Our data thus suggest a novel mechanism for the regulation of infammatory gene expression in response to bacterial stimuli and highlight LPCAT2 as a potential therapeutic target for development of anti-infammatory and anti-sepsis therapies.

DOI

10.1038/s41598-020-67000-x

Publication Date

2020-06-25

Publication Title

Scientific Reports

Volume

10

Issue

1

ISSN

2045-2322

Embargo Period

2021-11-06

Organisational Unit

School of Biomedical Sciences

Share

COinS