Abstract
The increasing security breaches revealed in recent surveys and security threats reported in the media reaffirms the lack of current security measures in IT systems. While most reported work in this area has focussed on enhancing the initial login stage in order to counteract against unauthorised access, there is still a problem detecting when an intruder has compromised the front line controls. This could pose a senous threat since any subsequent indicator of an intrusion in progress could be quite subtle and may remain hidden to the casual observer. Having passed the frontline controls and having the appropriate access privileges, the intruder may be in the position to do virtually anything without further challenge. This has caused interest'in the concept of continuous authentication, which inevitably involves the analysis of vast amounts of data. The primary objective of the research is to develop and evaluate a suitable correlation engine in order to automate the processes involved in authenticating and monitoring users in a networked system environment. The aim is to further develop the Anoinaly Detection module previously illustrated in a PhD thesis [I] as part of the conceptual architecture of an Intrusion Monitoring System (IMS) framework.
Document Type
Thesis
Publication Date
2003
Recommended Citation
Singh, H. (2003) A Correlation Framework for Continuous User Authentication Using Data Mining. Thesis. University of Plymouth. Retrieved from https://pearl.plymouth.ac.uk/secam-theses/506