Abstract

The plastic range of crack tip opening displacement (CTOD) has been used for the experimental characterisation of fatigue crack growth for 2024-T3 and 7050-T6 aluminium alloys using digital image correlation (DIC). Analysis of a complete loading cycle allowed resolving the CTOD into elastic and plastic components. Fatigue tests were conducted on compact tension specimens with a thickness of 1 mm and a width of 20 mm at stress ratios of 0.1, 0.3 and 0.5. The range of plastic CTOD could be related linearly to da/dN independent of stress ratio for both alloys. To facilitate accurate measurements of CTOD, a method was developed for correctly locating the crack tip and a sensitivity analysis was performed to explore the effect of measurement position behind the crack tip on the CTOD. The plastic range of CTOD was demonstrated to be a suitable alternate parameter to the stress intensity factor range for characterising fatigue crack propagation. A particularly innovative aspect of the work is that the paper describes a DIC-based technique that the authors believe gives a reliable way to determine the appropriate position to measure CTOD.

DOI

10.1111/ffe.13210

Publication Date

2020-03-03

Publication Title

Fatigue and Fracture of Engineering Materials and Structures

ISSN

8756-758X

Embargo Period

2021-03-03

Organisational Unit

School of Engineering, Computing and Mathematics

Share

COinS