ORCID

Abstract

Applying Deep Learning in the field of Industrial Internet of Things is a very active research field. The prediction of failures of machines and equipment in industrial environments before their possible occurrence is also a very popular topic, significantly because of its cost saving potential. Predictive Maintenance (PdM) applications can benefit from DL, especially because of the fact that high complex, non-linear and unlabeled (or partially labeled) data is the normal case. Especially with PdM applications being used in connected smart factories, low latency predictions are essential. Because of this real-time processing becomes more important. The aim of this paper is to provide a narrative review of the most current research covering trends and projects regarding the application of DL methods in IoT environments. Especially papers discussing the area of predictions and real-time processing with DL models are selected because of their potential use for PdM applications. The reviewed papers were selected by the authors based on a qualitative rather than a quantitative level.

Publication Date

2019-01-01

Publication Title

CEUR Workshop Proceedings

Volume

2348

ISSN

1613-0073

Embargo Period

2023-05-23

First Page

69

Last Page

79

Share

COinS