ORCID

Abstract

Fast tidal streams are a promising source of clean, predictable power, but the task of arranging tidal turbines for maximum power capture is complicated. Actuator disc models, such as the two-scale actuator disc theory, have proven useful in seeking optimal turbine arrangements, yet these models assume flows that are frictionless and steady, and thus quite unlike the channel flow conditions that actual tidal turbines experience. In this paper, we use numerical methods to relax these assumptions and explore how optimal turbine arrangements change as the flow transitions from frictionless and steady to rough and oscillatory. In so doing, we show that, under certain conditions, the assumption of quasi-steady flow in models of tidal turbines may neglect leading-order physics. When the ratio of drag to inertial forces in the unexploited channel is very low, for instance, the optimal turbine arrangements are found to be quite different, and the potential for enhanced power capture is found to be much greater than predicted by two-scale actuator disc theory.

DOI

10.1017/jfm.2019.68

Publication Date

2019-04-25

Publication Title

Journal of Fluid Mechanics

Volume

865

ISSN

0022-1120

Organisational Unit

School of Engineering, Computing and Mathematics

First Page

790

Last Page

810

Share

COinS