ORCID
- A. G.L. Borthwick: 0000-0001-6053-7764
Abstract
A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.
Publication Date
2017-01-01
Publication Title
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume
473
Issue
2200
ISSN
1364-5021
First Page
20160672
Last Page
20160672
Recommended Citation
Creed, M., Draper, S., Nishino, T., & Borthwick, A. (2017) 'Flow through a very porous obstacle in a shallow channel', Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2200), pp. 20160672-20160672. Available at: 10.1098/rspa.2016.0672