Abstract
Algebraic geometry codes or Goppa codes are defined with places of degree one. In constructing generalised algebraic geometry codes places of higher degree are used. In this paper we present 41 new codes over F16 which improve on the best known codes of the same length and rate. The construction method uses places of small degree with a technique originally published over 10 years ago for the construction of generalised algebraic geometry codes. © 2010 IEEE.
DOI
10.1109/ISIT.2010.5513687
Publication Date
2010-01-01
Publication Title
Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on
Publisher
IEEE
Embargo Period
2024-11-22
First Page
1130-1132
Last Page
1130-1132
Recommended Citation
Jibril, M., Tomlinson, M., Ahmed, M., & Tjhai, C. (2010) 'Good codes from generalised algebraic geometry codes', Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on, , pp. 1130-1132-1130-1132. IEEE: Available at: https://doi.org/10.1109/ISIT.2010.5513687
Comments
keywords: Goppa codes;algebraic codes;geometric codes;Goppa code;generalised algebraic geometry code;Computational geometry;Error correction codes;Galois fields;Linear code;Mathematics;Polynomials