Abstract

One aim of upcoming high-intensity laser facilities is to provide new high-flux gamma-ray sources. Electromagnetic cascades may serve for this, but are known to limit both field strengths and particle energies, restricting efficient production of photons to sub-GeV energies. Here we show how to create a directed GeV photon source, enabled by a controlled interplay between the cascade and anomalous radiative trapping. Using advanced 3D QED particle-in-cell (PIC) simulations and analytic estimates, we show that the concept is feasible for planned peak powers of 10 PW level. A higher peak power of 40 PW can provide $10^9$ photons with GeV energies in a well-collimated 3 fs beam, achieving peak brilliance ${9 \times 10^{24}}$ ph s$^{-1}$mrad$^{-2}$mm$^{-2}$/0.1${\%}$BW. Such a source would be a powerful tool for studying fundamental electromagnetic and nuclear processes.

DOI

10.1103/PhysRevX.7.041003

Publication Date

2017-10-06

Publication Title

Physical Review X

Volume

7

Issue

4

Publisher

American Physical Society

ISSN

2160-3308

Embargo Period

2024-11-22

Keywords

physics.plasm-ph, physics.plasm-ph

Share

COinS