ORCID

Abstract

© 2017 Elsevier Ltd A graphene/Si Schottky junction solar cell is commonly fabricated by using the top-window structure. However, reported devices have many drawbacks such as a small active area of 0.11 cm 2 , s-shape in the J-V curves, recombination process of charge carriers at the graphene/textured Si interface, high cost and a complex fabrication process. Here, we report a novel graphene/Si Schottky junction solar cell with a back contact-structure, which has benefits of a simpler fabrication process, lower fabrication cost, and larger active area in comparison with a device fabricated with the previous structure. Additionally, we found that the PMMA residue left on graphene surfaces is the key to eliminate the s-shape in the J-V curves. Thus, the deep UV treatment of the CVD graphene is applied within the wet transfer process to effectively remove the PMMA residue, suppress the behavior of s-shaped kink in J-V curves and enhance the solar cell efficiency. As a result, the recorded power conversion efficiency of 10% is achieved for graphene/textured Si devices without chemical doping and anti-reflection coating, and this value is improved to 14.1% after applying chemical doping. Doped devices also show great stability and retain 84% of the efficiency after 9 days storage in air.

DOI

10.1016/j.carbon.2017.12.053

Publication Date

2018-04-01

Publication Title

Carbon

Volume

129

ISSN

0008-6223

Organisational Unit

School of Engineering, Computing and Mathematics

First Page

520

Last Page

526

Share

COinS