ORCID

Abstract

We analyse the effect of gate surface curvature on the nonlinear behaviour of an array of gates in a semi-infinite channel. Using a perturbation-harmonic expansion, we show the occurrence of new detuning and damping terms in the Ginzburg–Landau evolution equation, which are not present in the case of flat gates. Unlike the case of linearised theories, synchronous excitation of trapped modes is now possible because of interactions between the wave field and the curved boundaries at higher orders. Finally, we apply the theory to the case of surging wave energy converters (WECs) with curved geometry and show that the effects of nonlinear synchronous resonance are substantial for design purposes. Conversely, in the case of subharmonic resonance we show that the effects of surface curvature are not always beneficial as previously thought.

DOI

10.1017/jfm.2019.223

Publication Date

2019-06-25

Publication Title

Journal of Fluid Mechanics

Volume

869

ISSN

0022-1120

Organisational Unit

School of Engineering, Computing and Mathematics

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

First Page

238

Last Page

263

Share

COinS