ORCID

Abstract

See Huang and Gitler (doi:10.1093/brain/awy112) for a scientific commentary on this article.Lowering the levels of disease-causing proteins is an attractive treatment strategy for neurodegenerative disorders, among which Huntington's disease is an appealing disease for testing this strategy because of its monogenetic nature. Huntington's disease is mainly caused by cytotoxicity of the mutant HTT protein with an expanded polyglutamine repeat tract. Lowering the soluble mutant HTT may reduce its downstream toxicity and provide potential treatment for Huntington's disease. This is hard to achieve by small-molecule compound drugs because of a lack of effective targets. Here we demonstrate Gpr52, an orphan G protein-coupled receptor, as a potential Huntington's disease drug target. Knocking-out Gpr52 significantly reduces mutant HTT levels in the striatum and rescues Huntington's disease-associated behavioural phenotypes in a knock-in Huntington's disease mouse model expressing endogenous mutant Htt. Importantly, a novel Gpr52 antagonist E7 reduces mutant HTT levels and rescues Huntington's disease-associated phenotypes in cellular and mouse models. Our study provides an entry point for Huntington's disease drug discovery by targeting Gpr52.

DOI

10.1093/brain/awy081

Publication Date

2018-06-01

Publication Title

Brain

Volume

141

Issue

6

ISSN

0006-8950

Embargo Period

2018-06-15

Organisational Unit

Peninsula Medical School

First Page

1782

Last Page

1798

Share

COinS