Abstract
Petroleum acids, often called 'Naphthenic Acids' (NA), enter the environment in complex mixtures from numerous sources. These include from Produced and Process-Affected waters discharged from some oil industry activities, and from the environmental weathering of spilled crude oil hydrocarbons. Here, we test the hypothesis that individual NA within the complex mixtures can induce developmental abnormalities in fish, by screening a range of individual acids, with known chemical structures. Sixteen aromatic NA were tested using a Thamnocephalus platyrus (beavertail fairyshrimp) assay, to establish acute toxicity. Toxicities ranged from 568 to 8 μM, with the methylbiphenyl acid, 4-(p-tolyl)benzoic acid, most toxic. Next, five of the most toxic monoacids and for comparison, a diacid, were assayed using Danio rerio (zebrafish) embryos to test for lethality and developmental abnormalities. The toxicities were also predicted using Admet predictor™ software. Exposure to the five monoacids produced deformities in zebrafish embryos in a dose-dependent manner. Thus, exposure to 4-(p-tolyl)benzoic acid produced abnormalities in >90% of the embryos at concentrations of <1 μM; exposure to dehydroabietic acid caused pericardial edema and stunted growth in 100% of the embryos at 6 μM and exposure to pyrene-1-carboxylic acid caused 80% of embryos to be affected at 3 μM. The findings of this preliminary study therefore suggest that some aromatic acids are targets for more detailed mechanistic studies of mode of action. The results should help to focus on those NA which may be important for monitoring in oil industry wastewaters and polluted environmental samples.
DOI
10.1016/j.chemosphere.2018.04.079
Publication Date
2018-08-01
Publication Title
Chemosphere
ISSN
0045-6535
Embargo Period
2019-04-14
Organisational Unit
Faculty of Science and Engineering
Recommended Citation
Rowland, S. J., Scarlett, A., Dogra, Y., Rowe, D., & Galloway, T. (2018) 'Predicted and measured acute toxicity and developmental abnormalities in zebrafish embryos produced by exposure to individual aromatic acids', Chemosphere, . Available at: https://doi.org/10.1016/j.chemosphere.2018.04.079