Show simple item record

dc.contributor.authorFerré, ECen
dc.contributor.authorGébelin, Aen
dc.contributor.authorTill, JLen
dc.contributor.authorSassier, Cen
dc.contributor.authorBurmeister, KCen
dc.date.accessioned2017-03-14T15:01:38Z
dc.date.available2017-03-14T15:01:38Z
dc.date.issued2014-01-01en
dc.identifier.issn0040-1951en
dc.identifier.urihttp://hdl.handle.net/10026.1/8615
dc.description.abstract

The Anisotropy of Magnetic Susceptibility (AMS) is a well-established petrofabric tool for indicating relative strain and microstructural character and has been validated on various rock types and different structural settings. The magnetic susceptibility of a rock (K) depends primarily on the nature and abundance of magnetic minerals. The physical arrangement and lattice-preferred orientation of these magnetic minerals give rise to magnetic anisotropy. The AMS scalar parameters most commonly used to constrain strain include the corrected degree of anisotropy (P'> 1), a proxy for fabric intensity, and the shape factor (- 1 ≤ T≤ + 1), an indicator of the magnetic fabric symmetry (prolate vs. oblate).A number of studies have shown that a positive correlation generally exists between P' and strain. Thus, the AMS shows a great potential as a tool for examining deformation in geologic structures characterized by large strain gradients such as shear zones. However, a number of caveats exist: (i) The increase of P' with strain cannot be solely attributed to deformation because P' also increases with K regardless of deformation; (ii) Strain across shear zones is typically heterogeneous and is often localized in units of different lithology, thus making the separation of the lithological and strain controls on AMS difficult; also, deformation is commonly accompanied by mineral segregation or fluid-rock interaction that induces changes in magnetic mineralogy; (iii) Even if the undeformed lithology was uniform across a shear zone, variations in strain rate or temperature may result in different deformation mechanisms; hence, the relationship between P' and strain depends strongly on both the mineral carriers of AMS and on deformation mechanisms; and (iv) The AMS is unable to resolve composite fabrics, such as those resulting from S-C structures, where minerals on the C and S planes, respectively, contribute to AMS.

en
dc.format.extent179 - 188en
dc.language.isoenen
dc.titleDeformation and magnetic fabrics in ductile shear zones: A reviewen
dc.typeJournal Article
plymouth.issueCen
plymouth.volume629en
plymouth.publication-statusPublisheden
plymouth.journalTectonophysicsen
dc.identifier.doi10.1016/j.tecto.2014.04.008en
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
dc.rights.embargoperiodNot knownen
rioxxterms.versionofrecord10.1016/j.tecto.2014.04.008en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV