Show simple item record

dc.contributor.authorAllsop, T
dc.contributor.authorArif, R
dc.contributor.authorNeal, R
dc.contributor.authorKalli, K
dc.contributor.authorKundrát, V
dc.contributor.authorRozhin, A
dc.contributor.authorCulverhouse, P
dc.contributor.authorWebb, DJ
dc.date.accessioned2016-10-07T10:42:40Z
dc.date.available2016-10-07T10:42:40Z
dc.date.issued2016
dc.identifier.issn2047-7538
dc.identifier.issn2047-7538
dc.identifier.otherARTN e16036
dc.identifier.urihttp://hdl.handle.net/10026.1/5582
dc.description.abstract

<jats:title>Abstract</jats:title><jats:p>We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO<jats:sub>2</jats:sub>)) and show this mechanism has important consequences for chemical sensing. CNTs have attracted significant research interest because they can be functionalized for a particular chemical, yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing. So far, however, utilizing their optical properties for this purpose has proven to be challenging. We demonstrate the use of localized surface plasmons generated on a nanostructured thin film, resembling a large array of nano-wires, to detect changes in the optical properties of the CNTs. Chemical selectivity is demonstrated using CO<jats:sub>2</jats:sub> in gaseous form at room temperature. The demonstrated methodology results additionally in a new, electrically passive, optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.</jats:p>

dc.format.extente16036-e16036
dc.format.mediumElectronic-eCollection
dc.languageen
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.subjectcarbon nanotubes
dc.subjectgas sensors
dc.subjectlocalized surface plasmons
dc.subjectoptical sensing
dc.titlePhotonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures
dc.typejournal-article
dc.typeArticle
plymouth.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/30167146
plymouth.issue2
plymouth.volume5
plymouth.publication-statusPublished online
plymouth.journalLight: Science &amp; Applications
dc.identifier.doi10.1038/lsa.2016.36
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
dc.publisher.placeEngland
dcterms.dateAccepted2015-10-20
dc.identifier.eissn2047-7538
dc.rights.embargoperiodNo embargo
rioxxterms.funderEPSRC
rioxxterms.identifier.projectGrating and waveguide plasmonic sensors
rioxxterms.versionofrecord10.1038/lsa.2016.36
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2016-02
rioxxterms.typeJournal Article/Review
plymouth.funderGrating and waveguide plasmonic sensors::EPSRC


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV