Show simple item record

dc.contributor.authorDallas, LJ
dc.contributor.authorBean, TP
dc.contributor.authorTurner, Andrew
dc.contributor.authorLyons, BP
dc.contributor.authorJha, Awadhesh
dc.date.accessioned2016-08-22T11:17:04Z
dc.date.issued2016-11-01
dc.identifier.issn0265-931X
dc.identifier.issn1879-1700
dc.identifier.urihttp://hdl.handle.net/10026.1/5355
dc.description.abstract

Temperature is an abiotic factor of particular concern for assessing the potential impacts of radionuclides on marine species. This is particularly true for tritium, which is discharged as tritiated water (HTO) in the process of cooling nuclear institutions. Additionally, with sea surface temperatures forecast to rise 0.5 - 3.5 C in the next 30-100 years, determining the interaction of elevated temperature with radiological exposure has never been more relevant. We assessed the tissue-specific accumulation, transcriptional expression of key genes, and genotoxicity of tritiated water to marine mussels at either 15 or 25 C, over a 7 day time course with sampling after 1 h, 12 h, 3 d and 7d. The activity concentration used (15 MBq L-1) resulted in tritium accumulation that varied with both time and temperature, but consistently produced dose rates (calculated using the ERICA tool) of <20 Gy h-1, i.e. considerably below the recommended guidelines of the IAEA and EURATOM. Despite this, there was significant induction of DNA strand breaks (as measured by the comet assay), which also showed a temperature-dependent time shift. At 15 C, DNA damage was only significantly elevated after 7 d, in contrast to 25 C where a similar response was observed after only 3 d. The transcription profiles of two isoforms of hsp70, hsp90, mt20, p53 and rad51 indicated potential mechanisms behind this temperature-induced acceleration of genotoxicity, which may be the result of compromised defence. Specifically, genes involved in protein folding, DNA double strand break repair and cell cycle checkpoint control were upregulated after 3 d HTO exposure at 15 C, but significantly downregulated when the same exposure occurred at 25 C. This study is the first to investigate temperature efects on radiation-induced genotoxicity in an ecologically relevant marine invertebrate, Mytilus galloprovincialis. From an ecological perspective, our study suggests that mussels (or similar marine species) exposed to increased temperature and HTO may have a compromised ability to defend against genotoxic stress. Abbreviations: HTO, tritiated water; Fpg, formamidopyrimidine glyco- sylase; GoI, gene of interest; LSC, liquid scintillation counting; tDAC, tissue dry activity concentration; TFWT, tissue free water tritium; tTAC, tissue total activity concentration; woTAC, whole organism total activity concentration.

dc.format.extent325-336
dc.format.mediumPrint-Electronic
dc.languageen
dc.language.isoen
dc.publisherElsevier
dc.subjectcomet assay
dc.subjectgene expression
dc.subjecttemperature
dc.subjectmussels
dc.subjectMytilus
dc.subjecttritium
dc.titleExposure to tritiated water at an elevated temperature: Genotoxic and transcriptomic effects in marine mussels (M. galloprovincialis).
dc.typejournal-article
dc.typeJournal Article
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000390507800037&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.volume164
plymouth.publication-statusPublished
plymouth.journalJournal of Environmental Radioactivity
dc.identifier.doi10.1016/j.jenvrad.2016.07.034
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Admin Group - REF
plymouth.organisational-group/Plymouth/Admin Group - REF/REF Admin Group - FoSE
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA06 Agriculture, Veterinary and Food Science
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/BEACh
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
plymouth.organisational-group/Plymouth/Users by role/Researchers in ResearchFish submission
dc.publisher.placeEngland
dcterms.dateAccepted2016-07-27
dc.rights.embargodate2017-8-21
dc.identifier.eissn1879-1700
dc.rights.embargoperiod12 months
rioxxterms.versionofrecord10.1016/j.jenvrad.2016.07.034
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved
rioxxterms.licenseref.startdate2016-11-01
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV