Show simple item record

dc.contributor.authorNOEL, LAURE MARIE-LOUISE JEANNE
dc.contributor.otherSchool of Biological and Marine Sciencesen_US
dc.date.accessioned2013-11-01T10:50:27Z
dc.date.available2013-11-01T10:50:27Z
dc.date.issued2007
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2515
dc.description.abstract

Positive interactions are increasingly recognised to be important as community structure processes. Bertness and Callaway's model predicts positive interactions to be important under high consumer pressure or high environmental stress. Associational defences between organisms, when palatable algae take advantage of living with less palatable ones, will be the dominant structuring forces under high consumer pressure and low physical stress. Habitat ameliorations become more important under harsh physical conditions and low consumer pressure. This model was tested at Wembury Bay, Devon, Southwest England, using rockpools and emergent rock habitats distributed over the vertical height of the shore to generate gradients of environmental stress. Relationships between rockpool physico-chemical parameters and assemblage composition were investigated across the shore. Highest rockpool communities on the shore experienced the harshest environmental stress. Consumer pressure measured in rockpools was twice that recorded on emergent rock owing to high tide limpet movements from the surroundings into the pool rather than herbivore densities. Over these gradients, experimental plots were maintained at natural and reduced grazer density to control consumer pressure. Species interactions during succession were examined. Experimental plots distributed at three shore heights (high, mid, low) were scraped in both habitats to initiate succession and were then sampled regularly over a 2 year period. Species susceptibility to grazing drove different trajectories of succession under high and low consumer pressure suggesting that palatability influences species interactions. Physical stress affected species recruitment and development of the successional sequence in both habitats and over the intertidal gradient. Selective removal of early ephemeral and later perennial colonising algal species provided some evidence of positive interactions under both elevated levels of physical stress and high consumer pressure. These results are discussed in the context of the Bertness and Callaway model with which they are consistent and other models of succession.

en_US
dc.description.sponsorshipThe Marine Biological Association of the UKen_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleSPECIES INTERACTIONS DURING SUCCESSION IN ROCKPOOLS: ROLE OF HERBIVORES AND PHYSICAL FACTORSen_US
dc.typeThesisen_US
plymouth.versionFull version: final and full version as approved by the examiners at the time of the award of your degreeen_US
dc.identifier.doihttp://dx.doi.org/10.24382/1421


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV