Show simple item record

dc.contributor.authorHEBEL, DAGMAR KARINA
dc.contributor.otherSchool of Biological and Marine Sciencesen_US
dc.date.accessioned2013-10-23T08:18:48Z
dc.date.available2013-10-23T08:18:48Z
dc.date.issued1997
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2296
dc.description.abstract

The effects of sublethal copper exposure at three levels of biological organisation were studied in the common shore crab Carcinus maenas (L.) (Crustacea, Decapoda). The three levels included the ultrastructure of respiratory and osmoregulatory gill tissues; ventilatory physiology (scaphognathite activity); and tissue metallothionein levels. Respiratory gill epithelia were more sensitive to sublethal copper exposure than osmoregulatory gill tissues. The cellular damage observed included severe epithelial necrosis and vacuolation, hyperplasia and haemocyte infiltration. In the respiratory gills, these changes were first present following exposure to 100 µg Cu Lˉ¹ At 500 µg Cu Lˉ¹, there was complete degeneration of the epithelia. In osmoregulatory gills, lipofuscin granules were formed at 300 µg Cu Lˉ¹. Signs of cellular damage (as observed in respiratory gills) appeared in the osmoregulatory gills only following exposure to 500 µg Cu Lˉ¹, and were restricted to areas proximal to the marginal canal. Copper concentrations below 100 µg Cu Lˉ¹ had no effect on gill tissues. This result is discussed with reference to previous studies, and related to inter-population differences and exposure techniques. Gill ultrastructural differences were observed in crabs from two estuaries with different levels of water-borne trace metals, and in crabs transplanted from the cleaner to the more polluted site. Differences included . varying densities of plasmalemmal folds and frequencies of cellular vacuolation, as well as composition and thickness of algal surface layers on the gill cuticle. Following laboratory copper exposures (500 µg Cu Lˉ¹), gill ultrastructural "damage" and tissue metallothionein levels were related to changes in scaphognathite activity. Physiological effects, including changes in scaphognathite rate and periods of apnoea, were exacerbated by increased temperature and hypoxia. Changes in scaphognathite activity and metallothionein levels were not consistent following several exposures to the same level of copper; results are discussed in relation to physiological influences. In contrast, gill ultrastructure showed consistent deterioration following exposure to 500 µg Cu Lˉ¹. Gill ultrastructure represents a reliable indicator of exposure to copper at this concentration compared to both scaphognathite activity and metallothionein concentrations.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleEFFECTS OF COPPER ON GILL STRUCTURE AND PHYSIOLOGY IN CARCINUS MAENASen_US
dc.typeThesis
dc.identifier.doihttp://dx.doi.org/10.24382/3283
dc.identifier.doihttp://dx.doi.org/10.24382/3283


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV