Show simple item record

dc.contributor.authorSEEBOLD, CHRISTOPHER RICHARD
dc.contributor.otherSchool of Engineering, Computing and Mathematicsen_US
dc.date.accessioned2013-10-22T09:58:59Z
dc.date.available2013-10-22T09:58:59Z
dc.date.issued1989
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2275
dc.description.abstract

The potential health risk of diesel particulate (DP) has stimulated research into its physical and chemical composition. Its interaction with unburnt hydrocarbons (UHC) at exhaust temperatures was studied (i.e. composition and microstructure), at varying engine conditions. A hot whole exhaust filtration system was developed to collect DP on Pallflex TX-40 PTFE coated filters (for minimal artefact formation) down the exhaust of a Ricardo E6/T IDI diesel engine. Electron microscopy (SEM and TEM) and a gravimetric BET method determined particle size, specific surface area (SSA) and pore character. An in vacuo gravimetric thermal degassing (TD) apparatus was constructed to extract adsorbed volatiles (filter extractable sample - FES). The volatile FES was trapped and analysed by gas chromatography and identified as fuel and oil derived UHC's. Ultrasonic and soxhlet extraction techniques were employed for comparison studies. DP are graphitic carbonaceous aggregates of 30-40nm mean particle diameter. Structural analysis indicated that slit-shaped pores (Type II isotherm) were formed between crystallite layers. Highly adsorbed pore-bound FES fractions were identified (fuel i n ultramicropores, 0.355-lnm; fuel/oil in supermicropores, 1-2nm), trapped by overlapping crystallite van der Waal's fields. Engine load influenced micropore adsorption and DP SSA. High loads with high combustion temperatures, efficiently pyrolysed fuel, producing DP with little adsorbed FES and SSA's of 100m² /g. Low loads with lower in-cylinder temperatures, formed less DP and more fuel survived, producing soots of low SSA(<20m² /g). Between aggregated particles, 'ink-bottle' mesopores (2-50nm) were evident (Type IV isotherm) where fuel FES was weakly adsorbed by temperature dependent chemical scavenging as exhaust temperature declined , reducing SSA and increasing particle size. Thermal degassing was more efficient than soxhlet or ultrasonic extraction methods, because the solvent methods failed to penetrate the smallest pores. TD increased soot SSA, greatest for low load samples (by 200m²/g) compared to high load samples (by 50m² /g). TD was highly advantageous for DP extraction and allowed progressive removal of volatiles. A modern DI engine showed structurally similar soots, but the lower DP emissions produced high relative %FES for all engine conditions giving low SSA's. The research findings are related to cylinder and environmental processes for engineers and environmental scientists to improve control strategies.

en_US
dc.description.sponsorshipPERKINS TECHNOLOGY BUSINESS PETERBOROUGH CAMBRIDGESHIREen_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleTHE INTERACTION BETWEEN UNBURNT HYDROCARBONS AND SOOT IN DIESEL EXHAUSTSen_US
dc.typeThesis
dc.identifier.doihttp://dx.doi.org/10.24382/4639
dc.identifier.doihttp://dx.doi.org/10.24382/4639


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV