Show simple item record

dc.contributor.authorJha, Awadhesh
dc.contributor.authorKrishnan, R
dc.contributor.authorHoward, I
dc.contributor.authorComber, S
dc.date.accessioned2023-06-20T11:58:32Z
dc.date.available2023-06-20T11:58:32Z
dc.date.issued2023-08-20
dc.identifier.issn1879-1026
dc.identifier.other164072
dc.identifier.urihttps://pearl.plymouth.ac.uk/handle/10026.1/20987
dc.description.abstract

Biocides are a heterogeneous group of chemical substances intended to control the growth or kill undesired organisms. Due to their extensive use, they enter marine ecosystems via non-point sources and may pose a threat to ecologically important non-target organisms. Consequently, industries and regulatory agencies have recognized the ecotoxicological hazard potential of biocides. However, the prediction of biocide chemical toxicity on marine crustaceans has not been previously evaluated. This study aims to provide in silico models capable of classifying structurally diverse biocidal chemicals into different toxicity categories and predict acute chemical toxicity (LC50) in marine crustaceans using a set of calculated 2D molecular descriptors. The models were built following the guidelines recommended by the OECD (Organization for Economic Cooperation and Development) and validated through stringent processes (internal and external validation). Six machine learning (ML) models were built and compared (linear regression: LR; support vector machine: SVM; random forest: RF; feed-forward backpropagation-based artificial neural network: ANN; decision trees: DT and naïve Bayes: NB) for regression and classification analysis to predict toxicities. All the models displayed encouraging results with high generalisability: the feed-forward-based backpropagation method showed the best results with determination coefficient R2 values of 0.82 and 0.94, respectively, for training set (TS) and validation set (VS). For classification-based modelling, the DT model performed the best with an accuracy (ACC) of 100 % and an area under curve (AUC) value of 1 for both TS and VS. These models showed the potential to replace animal testing for the chemical hazard assessment of untested biocides if they fall within the applicability domain of the proposed models. In general, the models are highly interpretable and robust, with good predictive performance. The models also displayed a trend indicating that toxicity is largely influenced by factors such as lipophilicity, branching, non-polar bonding and saturation of molecules.

dc.publisherElsevier
dc.titleIn silico prediction of acute chemical toxicity of biocides in marine crustaceans using machine learning
dc.typejournal-article
plymouth.volume887
plymouth.journalScience of the Total Environment
dc.identifier.doi10.1016/j.scitotenv.2023.164072
plymouth.organisational-group|Plymouth
plymouth.organisational-group|Plymouth|Research Groups
plymouth.organisational-group|Plymouth|Faculty of Science and Engineering
plymouth.organisational-group|Plymouth|Faculty of Science and Engineering|School of Biological and Marine Sciences
plymouth.organisational-group|Plymouth|Research Groups|Marine Institute
plymouth.organisational-group|Plymouth|REF 2021 Researchers by UoA
plymouth.organisational-group|Plymouth|Users by role
plymouth.organisational-group|Plymouth|Users by role|Academics
plymouth.organisational-group|Plymouth|REF 2021 Researchers by UoA|UoA06 Agriculture, Veterinary and Food Science
plymouth.organisational-group|Plymouth|Admin Group - REF
plymouth.organisational-group|Plymouth|Admin Group - REF|REF Admin Group - FoSE
plymouth.organisational-group|Plymouth|Users by role|Researchers in ResearchFish submission
dcterms.dateAccepted2023-05-07
dc.date.updated2023-06-20T11:58:31Z
dc.rights.embargodate2023-6-22
dc.rights.embargoperiodforever
rioxxterms.versionofrecord10.1016/j.scitotenv.2023.164072


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV