Show simple item record

dc.contributor.authorButler, James Michael
dc.contributor.otherSchool of Engineering, Computing and Mathematicsen_US
dc.date.accessioned2022-11-17T13:41:02Z
dc.date.issued2022
dc.identifier10482685en_US
dc.identifier.urihttp://hdl.handle.net/10026.1/19984
dc.description.abstract

Nosocomial infections (those that are hospital-acquired) lead to patient morbidity and mortality, and are further complicated by the growing problem of antimicrobial resistance. Wastewater plumbing systems (WPS) are bacterial reservoirs and vehicles for bacterial transmission. Sink traps form a barrier between users and the WPS, but breaches can lead to contamination and have been implicated in outbreaks of infections. This project sought to address the need for a novel antimicrobial nanocoating to reduce bacterial colonisation and biofilm formation in sink traps.

A nanocoating was developed by embedding silver nanoparticles in a matrix of commercially-available and low-cost pipe cement, applied to unplasticised polyvinyl chloride. Material characterisation and nanotopography imaging revealed that roughness was increased by surface grinding, with nanotopography images showing the troughs produced, and high silver stability was evident with very low dissolution under controlled dialysis experiment conditions.

Culture-dependent and -independent techniques were used to characterise the bacteria present in hospital sink traps, revealing certain dominant genera such as Citrobacter, Pseudomonas and Serratia. Sequencing of 16S rDNA from sink traps has previously been an under-reported area. A bacterial isolate of interest, Cupriavidus pauculus MF1, was further investigated and found to be multidrug-resistant with biofilm formation comparable to Pseudomonas aeruginosa. Whole genome sequencing, producing a hybrid assembly of short- and long-reads, allowed annotation of a number of antibiotic and metal resistance and virulence factor genes of interest, supporting the suggestion that awareness should be increased for this and other opportunistic pathogens in hospital sink traps.

Silver nanocoatings demonstrated potent antiplanktonic and antibiofilm activity against the nosocomial pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and Enterococcus faecalis.

Novel, more realistic experimental conditions were developed, first using a hospital sink trap community to colonise a benchtop model sink trap system. Antibiofilm activity was evident over long time periods, up to 11 days, but waned by day 25. Placement of silver nanocoated specimens in real-world sink traps in two university buildings provided little overall evidence of a consistent antibiofilm effect. Follow-up in vitro experiments using hospital and university building sink trap communities confirmed that the silver nanocoating was active against those same polymicrobial communities. It is possible that certain realistic environmental conditions mask the surface of nanocoatings and limit their activity, with relevance to antimicrobial nanocoating development in plumbing systems and other environments. The results indicate that there can be significant discord between in vitro and in situ experiments, emphasising the need for novel antimicrobial nanocoatings to be evaluated in real-world settings.

en_US
dc.language.isoen
dc.publisherUniversity of Plymouth
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectAntibacterialen_US
dc.subjectAntibiofilmen_US
dc.subjectSilveren_US
dc.subjectNanocompositeen_US
dc.subjectSink trapen_US
dc.subjectWastewater plumbingen_US
dc.subjectNosocomialen_US
dc.subjectBiofilmen_US
dc.subjectHospitalen_US
dc.subjectNanocoatingen_US
dc.subjectNanoparticlesen_US
dc.subject.classificationPhDen_US
dc.titleDevelopment of a novel antibacterial silver nanocoating to reduce nosocomial infectionsen_US
dc.typeThesis
plymouth.versionpublishableen_US
dc.identifier.doihttp://dx.doi.org/10.24382/1126
dc.rights.embargodate2023-11-17T13:41:02Z
dc.rights.embargoperiod12 monthsen_US
dc.type.qualificationDoctorateen_US
rioxxterms.versionNA
plymouth.orcid_idhttps://orcid.org/0000-0003-1998-1219en_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV