Show simple item record

dc.contributor.authorSheehan, Emma
dc.contributor.authorHolmes, Luke
dc.contributor.authorDavies, Bede Ffinian Rowe
dc.contributor.authorCartwright, A
dc.contributor.authorRees, A
dc.contributor.authorAttrill, Martin
dc.date.accessioned2021-08-27T15:52:02Z
dc.date.available2021-08-27T15:52:02Z
dc.date.issued2021-08-23
dc.identifier.issn2296-7745
dc.identifier.issn2296-7745
dc.identifier.otherARTN 671427
dc.identifier.urihttp://hdl.handle.net/10026.1/17745
dc.description.abstract

<jats:p>Marine protected areas (MPAs) are employed as tools to manage human impacts, especially fishing pressure. By excluding the most destructive activities MPAs can rewild degraded areas of seabed habitat. The potential for MPAs to increase ecosystem resilience from storms is, however, not understood, nor how such events impact seabed habitats. Extreme storm disturbance impact was studied in Lyme Bay MPA, Southwest United Kingdom, where the 2008 exclusion of bottom-towed fishing from the whole site allowed recovery of degraded temperate reef assemblages to a more complex community. Severe storm impacts in 2013–2014 resulted in major damage to the seabed so that assemblages in the MPA were more similar to sites where fishing continued than at any point since the designation of the MPA; the communities were not dominated by species resistant to physical disturbance. Nevertheless, annual surveys since 2014 have demonstrated that the initial recovery of MPA assemblages was much quicker than that seen following the cessation of chronic towed fishing impact in 2008. Likewise, General Additive Mixed Effect Models (GAMMs) showed that inside the MPA increases in diversity metrics post-Storm were greater and more consistent over time than post-Bottom-Towed Fishing. As extreme events are likely to become more common with climate change, wave exposure observations indicated that 29% of coastal reef MPAs around the United Kingdom may be exposed to comparable wave climate extremes, and may be similarly impacted. This paper therefore provides an insight into the likely extent and magnitude of ecological responses of seabed ecosystems to future extreme disturbance events.</jats:p>

dc.format.extent671427-
dc.language.isoen
dc.publisherFrontiers Media
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectclimate change
dc.subjectmarine protected areas
dc.subjecttemperate reef
dc.subjectstorms
dc.subjectunderwater video
dc.subjectbenthic impact
dc.titleRewilding of Protected Areas Enhances Resilience of Marine Ecosystems to Extreme Climatic Events
dc.typejournal-article
dc.typeJournal Article
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:001026540400001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.volume8
plymouth.publication-statusPublished online
plymouth.journalFrontiers in Marine Science
dc.identifier.doi10.3389/fmars.2021.671427
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/PRIMaRE Publications
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/BEACh
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dcterms.dateAccepted2021-07-31
dc.rights.embargodate2021-9-1
dc.identifier.eissn2296-7745
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.3389/fmars.2021.671427
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
rioxxterms.licenseref.startdate2021-08-23
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV