Show simple item record

dc.contributor.supervisorGraham, David
dc.contributor.authorBu sinnah, Zainab Ali
dc.contributor.otherSchool of Engineering, Computing and Mathematicsen_US
dc.date.accessioned2020-08-06T10:01:07Z
dc.date.issued2020
dc.identifier10506021en_US
dc.identifier.urihttp://hdl.handle.net/10026.1/16136
dc.description.abstract

The aim of this thesis is to study the Lattice Boltzmann method for fluid dynamics by using moment based boundary condition to implement no-slip and partial slip boundary conditions in two and three dimensions. The main topics are the theory of the Lattice Boltzmann method, an examination of boundary conditions and the application of the Lattice Boltzmann method to a variety of fluid flows. We developed and successfully implemented combinations of no-slip, Navier-slip, pressure boundaries and inlet conditions in two and three dimensions using moment-based boundary conditions including careful treatments of conditions along edges and at corners. A useful advantage of the use of moment based boundary conditions is that it allows for Navier-slip conditions to be implemented exactly i.e. without the use of arbitrary coefficients required in some other methods. The first application of the method is pulsatile fluid flow with no-slip and Navierslip boundary conditions in two and three dimensions. The results are in good agreement with exact solutions and some interesting results related to non-convergence of acoustic scaling for the two dimensions are found. The next application is three-dimensional laminar flow in a square duct driven by a body force. The results agree well with the analytical solution. Next, a study is presented of the rarefaction and compressibility effect on laminar flow between two parallel plates and in a three-dimensional micro-duct which are driven by differential pressures at the inlet and outlet. The results are again compatible with those found in the literature. Finally, we investigate the developing three-dimensional laminar flow in the entrance region of a rectangular channel. Results demonstrate some interesting Reynolds number dependence and are found to be in line with the literature for high Reynolds number.

en_US
dc.language.isoen
dc.publisherUniversity of Plymouth
dc.rightsAttribution-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/us/*
dc.subjectLattice Boltzmann methoden_US
dc.subjectmoment based boundary conditionen_US
dc.subjectthree dimensionsen_US
dc.subject.classificationPhDen_US
dc.titleLattice Boltzmann Method For 2D and 3D Flows in Channels and Ducts with Slip and no-Slip Wallsen_US
dc.typeThesis
plymouth.versionpublishableen_US
dc.identifier.doihttp://dx.doi.org/10.24382/851
dc.rights.embargodate2021-08-06T10:01:07Z
dc.rights.embargoperiod12 monthsen_US
dc.type.qualificationDoctorateen_US
rioxxterms.versionNA


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 3.0 United States

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV