Show simple item record

dc.contributor.authorLo Iacono, C
dc.contributor.authorGuillén, J
dc.contributor.authorGuerrero, Q
dc.contributor.authorDurán, R
dc.contributor.authorWardell, C
dc.contributor.authorHall, RA
dc.contributor.authorAslam, T
dc.contributor.authorCarter, GDO
dc.contributor.authorGales, JA
dc.contributor.authorHuvenne, VAI
dc.date.accessioned2020-06-08T11:17:40Z
dc.date.available2020-06-08T11:17:40Z
dc.date.issued2020-07-15
dc.identifier.issn0012-821X
dc.identifier.issn1385-013X
dc.identifier.other116321
dc.identifier.urihttp://hdl.handle.net/10026.1/15740
dc.description12 months embargo applies.
dc.description.abstract

Submarine canyons are known to force ocean mesoscale circulation and local hydrodynamics. Alternate up- and down-canyon near-bottom flows have been widely documented along the upper reaches, connecting the canyon heads with the contiguous outer shelves and vice versa. Nonetheless, we still miss clear evidence of bedform fields expressing these complex patterns. In this study, through a multi-scale analysis in both space and time, we document rare asymmetric bedforms, up to 880 m long and 10 m high, developing within a depth range of 168-220 m at the head of the Whittard Canyon (NE Atlantic). One field of well-developed sandwaves has an atypical up-slope asymmetry, with the steeper slope facing the shallower regions of the shelf, and contrasting with surrounding down-slope sandwaves facing the canyon. The bedforms are interpreted to represent both up-slope and down-slope bottom currents connecting the upper reaches of the canyon to the outer shelf on the southern Celtic Margin, in the Bay of Biscay. The sandwaves were surveyed with shipboard Multibeam bathymetry (5 m grid cell resolution), AUV sidescan sonar (0.15 m grid cell resolution) and ROV footage, and sampled with three ROV-mounted vibro-cores and two box-cores. Sidescan sonar mosaics groundtruthed by sediment samples and ROV footage show with unprecedented detail spectacular trains of fresh overprinting megaripples, previously undocumented sand peaks and bowl-shaped depressions on the crests of the tallest sandwaves. Differences in sedimentary settings and benthic habitats indicate that these features are currently active in particularly dynamic areas, allowing for very slow migration of sandwaves. Numerical modelling together with concurrent hydrographic observations suggest large-amplitude semi-diurnal internal tides, possibly transitioning to asymmetric internal bores, as the main mechanism maintaining the mapped up-slope sandwaves. This work highlights the importance of uncommon sediment dynamics in canyon head environments and adds insight to the traditional notions of gravity-driven processes, being dominant in these environments, envisaging implications for improving geo-hazard assessment of mobile substrates and quantification of offshore sediment and carbon fluxes.

dc.format.extent116321-116321
dc.languageen
dc.language.isoen
dc.publisherElsevier BV
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectbedforms
dc.subjectsubmarine canyons
dc.subjectinternal tides
dc.subjectgeomorphology
dc.subjectseafloor mapping
dc.subjectmarine robotics
dc.titleBidirectional bedform fields at the head of a submarine canyon (NE Atlantic)
dc.typejournal-article
dc.typeArticle
plymouth.volume542
plymouth.publication-statusPublished
plymouth.journalEarth and Planetary Science Letters
dc.identifier.doi10.1016/j.epsl.2020.116321
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dcterms.dateAccepted2020-05-01
dc.rights.embargodate2021-5-19
dc.identifier.eissn1385-013X
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.1016/j.epsl.2020.116321
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
rioxxterms.licenseref.startdate2020-07-15
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV