Show simple item record

dc.contributor.authorPerez del Postigo Prieto, Natalia
dc.contributor.authorRaby, Alison
dc.contributor.authorBoulton, Sarah
dc.contributor.authorWhittaker, C
dc.date.accessioned2019-04-04T07:38:45Z
dc.date.available2019-04-04T07:38:45Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/10026.1/13604
dc.description.abstract

Tsunami generation and propagation mechanisms should be clearly understood in order to inform predictive models and improve coastal community preparedness. Experimental results, supported by mathematical models, could potentially provide valuable input data for standard predictive models of tsunami generation and propagation. A unique set-up has been developed to reproduce a dual-source tsunami generation mechanism. The test-rig replicates a two-dimensional underwater fault rupture followed by a submarine landslide. The set-up was placed in a 20m flume of the COAST laboratory at Plymouth University. The aim of the experiments is to provide quality data for developing a parametrization of the initial conditions for tsunami generation processes which are triggered by a dual-source. The free surface elevation changes are investigated in relation to the fault rupture and landslide motions. During the test programme, the water depth and the landslide density were varied. The position of the landslide model was tracked and the free surface elevation of the water body was measured. Hence tsunami characteristics of wave height, wavelength and propagation speed were determined. This paper provides a detailed description of the test rig and presents some preliminary results which highlight the performance of the test rig in terms of repeatability.

dc.language.isoen
dc.subjectTsunami generation
dc.subjectSubmarine landslide
dc.subjectFault rupture
dc.subjectPhysical modelling
dc.subjectDual-source
dc.titleTsunami Generation by Combined Fault Rupture and Landsliding
dc.typeconference
dc.typeinproceedings
plymouth.date-start2018-05-22
plymouth.date-finish2018-05-26
plymouth.conference-nameCOASTLAB 2018
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Admin Group - REF
plymouth.organisational-group/Plymouth/Admin Group - REF/REF Admin Group - FoSE
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Engineering, Computing and Mathematics
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA12 Engineering
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
plymouth.organisational-group/Plymouth/Users by role/Researchers in ResearchFish submission
dc.publisher.placeSantander
dcterms.dateAccepted2018-01-01
dc.rights.embargoperiodNot known
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.typeConference Paper/Proceeding/Abstract


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV