Show simple item record

dc.contributor.supervisorMatthews, G. Peter
dc.contributor.authorJones, Katie
dc.contributor.otherSchool of Geography, Earth and Environmental Sciencesen_US
dc.date.accessioned2019-03-06T09:24:11Z
dc.date.available2019-03-06T09:24:11Z
dc.date.issued2019
dc.date.issued2019
dc.identifier10245652en_US
dc.identifier.urihttp://hdl.handle.net/10026.1/13436
dc.description.abstract

The pore-level characterisation of nuclear graphite is critical for predicting reactor safety and for assessing the viability of different grades of graphite material. The majority of studies often focus on the impact of one specific length scale (macroscopic/mesoscopic/ microscopic) but very few studies have attempted to provide void size information which spans multiple length scales. This study, therefore, aimed to advance the knowledge of the entire void range for Gilsocarbon graphite, including any changes to the void structure that occur as a consequence of irradiation damage and radiolytic oxidation, by incorporating a combination of experimental and modelling techniques.

Gilsocarbon graphite, which is incorporated in the current UK Advanced gas cooled reactors, is particularly difficult to characterise at a pore level due to its highly complex pore matrix which comprises voidage over several orders of magnitude. Additionally, the radioactive nature of the samples limits the amount of material available for analysis. In order to successfully measure the small sample volumes provided, novel instrumentation and interpretation methods were developed. This included the construction of a micropycnometer, built to obtain values of the accessible and inaccessible pore volumes. In addition, graphite's low surface area demanded the use of krypton as an adsorbative, which required the acquisition of a high performance instrument as well as the development of an interpretive GCMC kernel for obtaining pore size information. These data were used to correct the pore size information obtained at high pressure during mercury porosimetry, as the porosimetry data was suspected to contain inaccuracies due to damage or deformation of the graphite's microstructure caused by the analysis. The bespoke software package PoreXpert, designed at the University of Plymouth, was used to inverse model the experimentally measured percolation characteristics and total accessible porosity to generate simulated void network structures.

The improved, quasi-Bayesian, modelling of the combined percolation curves identified differences in the pore size distributions for Gilsocarbon samples during various stages of ageing. The findings from the bespoke models complemented the experimental results, in that the findings supported the idea of uniform evolution for all pore-throat entrance sizes and provided a more robust modelling procedure which together enhanced the understanding of the mechanistic interpretations. Such findings contradict the current weight loss prediction models, but complement the working hypothesis formulated within EDF Energy graphite research group. Therefore, the experimental and modelled results will feature in a supportive document of proposed revisions to the EDF Energy Safety Case submitted to the Office for Nuclear Regulation.

en_US
dc.description.sponsorshipEDF Energyen_US
dc.language.isoen
dc.publisherUniversity of Plymouth
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectCharacterisation
dc.subjectPorosity
dc.subjectNuclear Graphiteen_US
dc.subject.classificationPhDen_US
dc.titleA Study of the Effects of Irradiation and Radiolytic Oxidation of the Pore-Level Structure of Gilsocarbon Nuclear Graphiteen_US
dc.typeThesis
plymouth.versionpublishableen_US
dc.identifier.doihttp://dx.doi.org/10.24382/1221
dc.rights.embargoperiodNo embargoen_US
dc.type.qualificationDoctorateen_US
rioxxterms.versionNA
plymouth.orcid.idhttps://orcid.org/0000-0002-5999-8472en_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 United States
Except where otherwise noted, this item's license is described as Attribution 3.0 United States

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV