Show simple item record

dc.contributor.authorMussttaf, RA
dc.contributor.authorJenkins, D
dc.contributor.authorJha, Awadhesh
dc.date.accessioned2019-01-21T10:12:57Z
dc.date.available2019-01-21T10:12:57Z
dc.date.issued2019-02-01
dc.identifier.issn0955-3002
dc.identifier.issn1362-3095
dc.identifier.urihttp://hdl.handle.net/10026.1/13174
dc.description.abstract

PURPOSE: Low level laser therapy (LLLT) in the visible to near infrared spectral band (390-1100 nm) is absorption of laser light at the electronic level, without generation of heat. It may be applied in a wide range of treatments including wound healing, inflammation and pain reduction. Despite its potential beneficial impacts, the use of lasers for therapeutic purposes still remains controversial in mainstream medicine. Whilst taking into account the physical characteristics of different qualities of lasers, this review aims to provide a comprehensive account of the current literature available in the field pertaining to their potential impact at cellular and molecular levels elucidating mechanistic interactions in different mammalian models. The review also aims to focus on the integral approach of the optimal characteristics of LLLT that suit a biological system target to produce the beneficial effect at the cellular and molecular levels. METHODS: Recent research articles were reviewed that explored the interaction of lasers (coherent sources) and LEDs (incoherent sources) at the molecular and cellular levels. RESULTS: It is envisaged that underlying mechanisms of beneficial impact of lasers to patients involves biological processes at the cellular and molecular levels. The biological impact or effects of LLLT at the cellular and molecular level could include cellular viability, proliferation rate, as well as DNA integrity and the repair of damaged DNA. This review summarizes the available information in the literature pertaining to cellular and molecular effects of lasers. CONCLUSIONS: It is suggested that a change in approach is required to understand how to exploit the potential therapeutic modality of lasers whilst minimizing its possible detrimental effects.

dc.format.extent1-24
dc.format.mediumPrint-Electronic
dc.languageen
dc.language.isoen
dc.publisherTaylor & Francis
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectDNA damage
dc.subjectDNA repair
dc.subjectLow level laser therapy (LLLT)
dc.subjectcell proliferation
dc.subjectlight emitting diodes (LEDs)
dc.titleAssessing the impact of low level laser therapy (LLLT) on biological systems: a review
dc.typejournal-article
dc.typeJournal Article
dc.typeResearch Support, Non-U.S. Gov't
dc.typeReview
plymouth.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/30614743
plymouth.issue2
plymouth.volume95
plymouth.publication-statusPublished
plymouth.journalInternational Journal of Radiation Biology
dc.identifier.doi10.1080/09553002.2019.1524944
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Admin Group - REF
plymouth.organisational-group/Plymouth/Admin Group - REF/REF Admin Group - FoSE
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Engineering, Computing and Mathematics
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA06 Agriculture, Veterinary and Food Science
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA12 Engineering
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
plymouth.organisational-group/Plymouth/Users by role/Researchers in ResearchFish submission
dc.publisher.placeEngland
dcterms.dateAccepted2018-08-24
dc.rights.embargodate2020-1-7
dc.identifier.eissn1362-3095
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.1080/09553002.2019.1524944
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc/4.0/
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 4.0 International

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV