Abstract

The work described within this thesis explores the use of HPLC coupled with ICPMS and ESI-MS in order to develop novel methods which overcome specific analytical challenges in the pharmaceutical industry. A membrane desolvation interface has been evaluated for coupling high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS). Desolvation of the sample prior to reaching the plasma was shown to facilitate a versatile coupling of the two instrumental techniques, enabling chromatographic eluents containing up to 100 % organic to be used. This interface also allowed gradient elution to be used with ICP-MS. Tris(2,4,6-trimethoxyphenyl)phosphonium propylamine bromide (TMPP) was used for the derivatisation of maleic, fumaric, sorbic and salicylic acids to facilitate determination by HPLC-electrospray ionisation tandem mass spectrometry (ESIMS/ MS) in positive ion mode. Improvements in detection limits post-derivatisation were achieved, and this method was successfully used for the determination of sorbic acid in a sample of Panadol™. HPLC coupled with sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) has been used for the determination of maleic, sorbic and fumaric acids after derivatisation with TMPP. This allowed 31P+ selective detection to be performed for these compounds, which are normally undetectable by ICP-MS. Optimal reagent conditions for the derivatisation of 0.1 mM maleic acid were: 1 mM TMPP; 10 mM 2-chloro-1-methylpyridinium iodide (CMPI); 11 mM triethylamine. The efficiency of the derivatisation reaction was estimated to be between 10-20%. Detection limits, estimated as 3 times baseline noise, were 0.046 nmol for TMPP and 0.25 nmol for derivatised maleic acid, for a 5 f.JL injection. Following on from this, a novel derivatising reagent, tris(3,5-dibromo-2,4,6- trimethoxyphenyl) phosphonium propylamine bromide (BrTMPP), was synthesised and subsequently characterised by proton NMR spectroscopy and ESI-MS. This was utilised to derivatise maleic acid, with a 9-fold increase in sensitivity gained when analysed by bromine selective detection as apposed to phosphorus selective ICP-MS. This derivatising reagent (BrTMPP) was also utilised to determine the degree of phosphorylation on phosphorylated peptides. A phosphorus containing carboxylic acid was successfully derivatised and the correct Br:P ratio was determined for this compound by ICP-MS. However, phosphorylated peptides were not successfully derivatised by BrTMPP. A combination of UV and phosphorus selective ICP-MS was also used to distinguish between phosphorylated and un-phosphorylated peptides after HPLC separation.

Awarding Institution(s)

University of Plymouth

Supervisor

Hywel Evans, Philip Jones

Document Type

Thesis

Publication Date

2005

Deposit Date

June 2024

Additional Files

license.txt (3 kB)

Share

COinS