ORCID

Abstract

Peat archives offer a diverse range of physical and chemical proxies from which it is possible to study past environmental and ecological changes. Direct numerical calibration and verification is difficult so process-based and mechanistic studies are therefore required to establish and quantify links between environmental changes and their associated proxy-responses. Traditional ‘space-for-time’ calibrations provide a solution to this calibration problem, but are often unable to isolate a single environmental variable from other potentially confounding variables. In this study, we explored the potential of a site-specific ‘space-for-time’ approach applied to a hummock-hollow transect on an ombrotrophic raised bog in Patagonia, southern Chile. Coupled stable carbon, oxygen and hydrogen isotopic measurements were made on individual samples of Sphagnum moss cellulose and compared with plant-associated waters, local hydrology, temperature and relative humidity, sampled at the same points along the study transect. Results reveal a range of environmental responses, which were supported by plant-physiological models in the case of carbon and oxygen isotopes. For hydrogen isotopes, the results obtained from cellulose indicated a need for further research into hydrogen isotope fractionation in Sphagnum. We recommend conducting site-specific characterization of plant response to support the development of peat-based isotope records for palaeoenvironmental research, and where logistically possible, that monitoring is conducted over timescales appropriate to the time-integrative nature of the Sphagnum record.

DOI

10.1002/jqs.2871

Publication Date

2016-06-17

Publication Title

Journal of Quaternary Science

Volume

31

Issue

4

ISSN

0267-8179

Keywords

methanotrophy, palaeoclimate, Patagonia, peat, South America, Sphagnum, stable isotopes

First Page

426

Last Page

435

Share

COinS