ORCID
- Fauset, Sophie: 0000-0003-4246-1828
Abstract
The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (Tcrit)1. However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. Here we found that pantropical canopy temperatures independently triangulated from individual leaf thermocouples, pyrgeometers and remote sensing (ECOSTRESS) have midday peak temperatures of approximately 34 °C during dry periods, with a long high-temperature tail that can exceed 40 °C. Leaf thermocouple data from multiple sites across the tropics suggest that even within pixels of moderate temperatures, upper canopy leaves exceed Tcrit 0.01% of the time. Furthermore, upper canopy leaf warming experiments (+2, 3 and 4 °C in Brazil, Puerto Rico and Australia, respectively) increased leaf temperatures non-linearly, with peak leaf temperatures exceeding Tcrit 1.3% of the time (11% for more than 43.5 °C, and 0.3% for more than 49.9 °C). Using an empirical model incorporating these dynamics (validated with warming experiment data), we found that tropical forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a potential tipping point in metabolic function, but remaining uncertainty in the plasticity and range of Tcrit in tropical trees and the effect of leaf death on tree death could drastically change this prediction. The 4.0 °C estimate is within the ‘worst-case scenario’ (representative concentration pathway (RCP) 8.5) of climate change predictions2 for tropical forests and therefore it is still within our power to decide (for example, by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of carbon, water and biodiversity3,4.
DOI
10.1038/s41586-023-06391-z
Publication Date
2023-09-07
Publication Title
Nature
Volume
621
Issue
7977
ISSN
0028-0836
Embargo Period
2024-02-23
Organisational Unit
School of Geography, Earth and Environmental Sciences
First Page
105
Last Page
111
Recommended Citation
Doughty, C. E., Keany, J., Wiebe, B., Rey-Sanchez, C., Carter, K., Middleby, K., Cheesman, A., Goulden, M., da, R., Miller, S., Malhi, Y., Fauset, S., Gloor, E., Slot, M., Oliveras, M., Crous, K., Goldsmith, G., & Fisher, J. (2023) 'Tropical forests are approaching critical temperature thresholds', Nature, 621(7977), pp. 105-111. Available at: https://doi.org/10.1038/s41586-023-06391-z