Abstract
Atmospheric microplastics (MPs) have been sampled from coastal southwest England during twelve periods over a 42-day timeframe in late autumn. MPs were dominated by fibres, with foams, fragments and pellets also observed. The majority of fibres were identified as the semisynthetic polymer, rayon, while other shapes were dominated by various petroleum-based thermoplastics (including polyvinyl acetate, polyvinyl alcohol, polyamide and polyester) and paints. MP concentrations suspended in air ranged from 0.016 to 0.238 items per m3 but displayed no clear dependence on wind speed or direction. Total depositional fluxes ranged from 0.47 to 3.30 m−2 h−1 and showed no clear dependence on wind conditions or electrical conductivity of precipitation (as a measure of maritime influence). However, the concentration of deposited MPs in rainwater was inversely related to rainfall volume, suggesting that incipient precipitation acts to efficiently washout microplastics. A comparison of deposited and suspended MPs by size, shape and polymer type suggests that larger fibres constructed of rayon, polyamide and acrylic are preferentially removed from the atmosphere relative to smaller, non-fibrous MPs and particles constructed of polyester. A quantitative comparison of deposited and suspended MPs provided estimates of location- and environment-specific net settling velocities of between about 7 and 180 m h−1 and corresponding residence times for an air column of 5000 m of between about 30 and 700 h. The findings of the study contribute to an improved understanding of the occurrence, transport and deposition of MPs in the atmosphere more generally.
DOI
10.1016/j.chemosphere.2023.140258
Publication Date
2023-12-01
Publication Title
Chemosphere
Volume
343
ISSN
0045-6535
Embargo Period
2023-11-25
Organisational Unit
School of Geography, Earth and Environmental Sciences
Recommended Citation
Kyriakoudes, G., & Turner, A. (2023) 'Suspended and deposited microplastics in the coastal atmosphere of southwest England', Chemosphere, 343. Available at: https://doi.org/10.1016/j.chemosphere.2023.140258