Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland
Abstract
Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lakes, suggesting efficient transfer of meltwater from the supraglacial to subglacial hydrological systems. Although considerable effort is currently being directed towards improved modelling of the controlling surface and basal processes, modelling the temporal and spatial evolution of the transfer of melt to the bed has received less attention. Here we present the results of spatially distributed modelling for prediction of moulins and lake drainages on the Leverett Glacier in Southwest Greenland. The model is run for the 2009 and 2010 ablation seasons, and for future increased melt scenarios. The temporal pattern of modelled lake drainages are qualitatively comparable with those documented from analyses of repeat satellite imagery. The modelled timings and locations of delivery of meltwater to the bed also match well with observed temporal and spatial patterns of ice surface speed-ups. This is particularly true for the lower catchment (<1000 m a.s.l.) where both the model and observations indicate that the development of moulins is the main mechanism for the transfer of surface meltwater to the bed. At higher elevations (e.g. 1250–1500 m a.s.l.) the development and drainage of supraglacial lakes becomes increasingly important. At these higher elevations, the delay between modelled melt generation and subsequent delivery of melt to the bed matches the observed delay between the peak air temperatures and subsequent velocity speed-ups, while the instantaneous transfer of melt to the bed in a control simulation does not. Although both moulins and lake drainages are predicted to increase in number for future warmer climate scenarios, the lake drainages play an increasingly important role in both expanding the area over which melt accesses the bed and in enabling a greater proportion of surface melt to reach the bed.
DOI
10.5194/tc-9-123-2015
Publication Date
2015-01-22
Publication Title
The Cryosphere
Volume
9
Issue
1
Publisher
Copernicus GmbH
ISSN
1994-0424
Embargo Period
2024-11-25
First Page
123
Last Page
138
Recommended Citation
Clason, C., Mair, D., Nienow, P., Bartholomew, I., & et al. (2015) 'Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland', The Cryosphere, 9(1), pp. 123-138. Copernicus GmbH: Available at: https://doi.org/10.5194/tc-9-123-2015