Abstract

A wide literature of predominantly behavioural experiments that use Stimulus Response Compatibility (SRC) have suggested that visual action information such as object affordance yields rapid and concurrent activation of visual and motor brain areas, but has rarely provided direct evidence for this proposition. This thesis examines some of the key claims from the affordance literature by applying electrophysiological measures to well established SRC procedures to determine the verities of the behavioural claims of rapid and automatic visuomotor activation evoked by viewing affording objects. The temporal sensitivity offered by the Lateralised Readiness Potential and by visual evoked potentials P1 and N1 made ideal candidates to assess the behavioural claims of rapid visuomotor activation by seen objects by examining the timecourse of neural activation elicited by viewing affording objects under various conditions. The experimental work in this thesis broadly confirms the claims of the behavioural literature however it also found a series of novel results that are not predicted by the behavioural literature due to limitations in reaction time measures. For example, while different classes of affordance have been shown to exert the same behavioural facilitation, electrophysiological measures reveal very different patterns of cortical activation for grip-type and lateralised affordances. These novel findings question the applicability of the label ‘visuomotor’ to grip-type affordance processing and suggest considerable revision to models of affordance. This thesis also offers a series of novel and surprising insights into the ability to dissociate afforded motor activity from behavioural output, into the relationship between affordance and early visual evoked potentials, and into affordance in the absence of the intention to act. Overall, this thesis provides detailed suggestions for considerable changes to current models of the neural activity underpinning object affordance.

Keywords

Affordance, Visuomotor, Electroencephalography, EEG, Vision for Action, Embodied Cognition, Embodiment, Embodied, Cognitive Neuroscience, Cognitive, Cognitive Psychology, Psychology, Electrophysiology, Object, Stimulus Response Compatibility, Compatibility Effect, Intentional Action, Absence of intention, Compatibility, backward mask, consecutive object presentation, p1, n1, visual, motor, lateralised readiness potential, LRP, grip type, power grip, precision grip, visual evoked potential

Document Type

Thesis

Publication Date

2016

Share

COinS