Abstract

Purpose Flocculated cohesive suspended sediments (flocs) play an important role in all aquatic environments, facilitating the transport and deposition of sediment and associated contaminants with consequences for aquatic health, material fluxes, and morphological evolution. Accurate modelling of the transport and behaviour of these sediments is critical for a variety of activities including fisheries, aquaculture, shipping, and waste and pollution management and this requires accurate measurement of the physical properties of flocs including porosity. Methods Despite the importance of understanding floc porosity, measurement approaches are indirect or inferential. Here, using μCT, a novel processing and analysis protocol, we directly quantify porosity in natural sediment flocs. For the first time, the complexity of floc pore spaces is observed in 3-dimensions, enabling the identification and quantification of important pore space and pore network characteristics, namely 3D pore diameter, volume, shape, tortuosity, and connectivity. Results We report on the complexity of floc pore space and differentiate effective and isolated pore space enabling new understanding of the hydraulic functioning of floc porosity. We demonstrate that current methodological approaches are overestimating floc porosity by c. 30%. Conclusion These new data have implications for our understanding of the controls on floc dynamics and the function of floc porosity and can improve the parameterisation of current cohesive sediment transport models.

DOI

10.1007/s11368-022-03304-x

Publication Date

2022-12-01

Publication Title

Journal of Soils and Sediments

Volume

22

Issue

12

First Page

3176

Last Page

3188

ISSN

1439-0108

Embargo Period

2023-08-16

Organisational Unit

School of Biological and Marine Sciences

Share

COinS