ORCID

Abstract

Excessive CO2 in the present-day ocean–atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future1, mirroring eff ects in many past mass extinctions2–4. Fossil records demonstrate that organisms surviving such events were often smaller than those before5,6, a phenomenon called the Lilliput eff ect7. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partially repair shell dissolution. These observations of the long-term chronic e ffects of increased CO2 levels forewarn of changes we can expect in marine ecosystems as CO2 emissions continue to rise unchecked, and support the hypothesis that ocean acidification contributed to past extinction events. The ability to adapt through dwarfing can confer physiological advantages as the rate of CO2 emissions continues to increase.

DOI

10.1038/NCLIMATE2616

Publication Date

2015-04-20

Publication Title

Nature Climate Change

ISSN

1758-678X

Embargo Period

2015-10-20

Organisational Unit

School of Biological and Marine Sciences

Share

COinS