ORCID
- Danny Coles: 0000-0002-5676-4849
- Alex Nimmo Smith: 0000-0003-3108-9231
- Lilian Lieber: 0000-0002-4833-9594
Abstract
Ocean energy extraction is on the rise. While tides are the most predictable amongst marine renewable resources, turbulent and complex flows still challenge reliable tidal stream energy extraction and there is also uncertainty in how devices change the natural environment. To ensure the long-term integrity of emergent floating tidal turbine technologies, advances in field measurements are required to capture multiscale, real-world flow interactions. Here we use aerial drones and acoustic profiling transects to quantify the site- and scale-dependent complexities of actual turbulent flows around an idled, utility-scale floating tidal turbine (20 m rotor diameter, D). The combined spatial resolution of our baseline measurements is sufficiently high to quantify sheared, turbulent inflow conditions (reversed shear profiles, turbulence intensity >20%, and turbulence length scales > 0.4D). We also detect downstream velocity deficits (approaching 20% at 4D) and trace the far-wake propagation using acoustic backscattering techniques in excess of 30D. Addressing the energy-environment nexus, our oceanographic lens on flow characterisation will help to validate multiscale flow physics around offshore energy platforms that have thus far only been simulated.
DOI
10.1038/s41467-024-52578-x
Publication Date
2024-09-20
Publication Title
Nature Communications
Volume
15
Issue
1
ISSN
2041-1723
Recommended Citation
Lieber, L., Fraser, S., Coles, D., & Nimmo Smith, A. (2024) 'Sheared turbulent flows and wake dynamics of an idled floating tidal turbine', Nature Communications, 15(1). Available at: 10.1038/s41467-024-52578-x