This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author’s prior consent.
Social Exclusion, Resort Decline and the English Seaside

by

Steven Jakes

A thesis submitted to Plymouth University in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Tourism and Hospitality

September 2015
Acknowledgements

I would like to thank my supervisory team – Professor Sheela Agarwal, Dr Martin Mowforth and Dr Stephen Essex. I could not have wished for a better team. All three have been absolutely ace and without them this thesis would not have been produced. Special thanks to Sheela – I cannot express how appreciative I am for everything you have done, for being completely sound. Thank you so much!

I would also like to thank Professor Paul Brunt and the team at the School of Tourism and Hospitality for being so supportive over the years.
Authors Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been registered for any other University award without prior agreement of the Graduate Sub-Committee.

Work submitted for this research degree at the Plymouth University has not formed part of any other degree either at Plymouth University or at another establishment.

Word count of main body of thesis: 82,471
Social Exclusion, Resort Decline and the English Seaside

Steven Jakes

Abstract

Traditionally seaside resorts have been one of the least understood of Britain’s ‘problem areas’. This thesis breaks new ground by reporting on an exploratory data analysis to probe the influence of resort decline on social exclusion in England’s seaside resorts. Drawing on a wide range of socio-economic datasets and quantitative methods of data analysis and GIS software, the study investigates the scale, nature and extent of multiple deprivation in English seaside resorts, differences in socio-economic structure between deprived and non-deprived resorts and the factors that may explain these differences, and the nature and incidence of localised problem complexes. A combination of univariate, bivariate and multivariate empirical analyses, undertaken at several geographic scales, illuminates the differential incidence of deprivation. The study findings reveal that the majority of seaside districts, small areas and resorts are experiencing similar types and high levels of multiple deprivation. Various facets of population composition (worklessness, education and skills, health, family stability, connectivity, and poverty) and place factors (employment base, economic prosperity, housing, and community safety) are significant for deprivation in seaside resorts. Four types of highly deprived resort areas emerged from the cluster analysis. Not only are the research findings of paramount importance in understanding both the pattern of socio-spatial disadvantage and the prospects for socio-economic regeneration, but they also contribute to an understanding of the outcomes of post-mature resort development, particularly in relation to the internal dynamics of resort change.
1 Social Exclusion and the English Seaside: An Introduction 1
1.1 Understanding social exclusion 2
 1.1.1 Historical origins of social exclusion 2
 1.1.2 Differences between poverty, deprivation and social exclusion 4
 1.1.3 Social exclusion as a contested concept 8
 1.1.4 Previous research into social exclusion in the UK 10
1.2 Social exclusion and English seaside resorts: the relevance 15
1.3 Aims, objectives and contributions of the research 21
1.4 Structure of the thesis 24
1.5 Summary 26

2 Social Exclusion: Origins, Development and Policy 29
2.1 Tracing the beginnings of the concept 30
2.2 Social exclusion in the European Union 33
2.3 Social exclusion in the United Kingdom 41
 2.3.1 New Labour – new exclusion? 44
 2.3.2 Social exclusion and New Labour policy 48
 2.3.3 Social exclusion policy under the Coalition 70
2.4 Summary 71

3 Understanding Seaside Resort Change 75
3.1 The development of seaside resorts in Britain 76
 3.1.1 Approaches to studying resort development 79
 3.1.2 Summary 90
3.2 Understanding socio-economic resort change: conceptual issues 92
3.3 Reviewing evidence of socio-economic resort change 98
 3.3.1 How resorts are changing 100
 3.3.2 Potential factors influencing local area exclusion in seaside resorts 111
3.4 Summary 114

4 Research Methodology 117
4.1 Overview of research methodology 118
4.2 Examination of social exclusion in English ‘seaside’ resorts 122
 4.2.1 Data source 122
 4.2.2 Identification of seaside resorts – criteria and methods 127
 4.2.3 Analysis strategy 138
4.3 Examination of the influence of resort socio-economic performance on social exclusion 143
4.4 Typological investigation of excluded seaside resort localities 152
 4.4.1 Defining excluded localities 152
 4.4.2 Producing the typology 153
4.5 Summary 180
The Nature and Extent of Social Exclusion in English Seaside Resorts

District-level analysis
- **5.1.1 Local authority district level indicators of multiple deprivation**
- **5.1.2 Lower-super-output-area level indices of deprivation**
- **5.1.3 Summary of district-level results**

Lower-level super output area analysis
- **5.2.1 Changes since 2004 and 2010 at lower super output area level**
- **5.2.2 Summary of lower-super-output-area level results**

Resort-level analysis
- **5.3.1 Experience of multiple deprivation in seaside resorts**
- **5.3.2 Multiple deprivation and resort size**
- **5.3.3 Deprivation in large and medium-sized seaside resorts**
- **5.3.4 Summary of resort-level results**

Summary

Resort Socio-economic Performance and Social Exclusion

Assessment of the socio-economic structure and ‘health’ of resorts
- **6.1.1 Measures of population composition and dynamics**
- **6.1.2 Measures of area factors**
- **6.1.3 Summary of people and place effects**

Social exclusion at the intra-resort level - analysis of clusters

Summary

Discussion and Conclusion

Empirical findings
- **7.1.1 Nature, level and extent of social exclusion in seaside resorts**
- **7.1.2 Factors influencing deprivation in seaside resorts**
- **7.1.3 The diversity of deprived resort localities**

Key contributions

Study limitations

Future research priorities

References

Appendices
- **Appendix A: Tables of Results (Chapter 5)**
- **Appendix B: Tables of Results (Chapter 6)**
List of Tables

Table 1.1: Comparison of poverty, deprivation and social exclusion 7
Table 1.2: Facets of ‘social exclusion’ 10
Table 1.3: Key issues facing seaside resorts 17
Table 1.4: Typology of the socio-economic characteristics of English seaside resorts 19

Table 2.1: Three paradigms of exclusion 40
Table 2.2: Dimensions of the Third Way in social policy 48
Table 2.3: Description and indicators relating to social exclusion 1997-2011 51
Table 2.4: The New Deal programme 54
Table 2.5: Reaching Out - guiding principles 64
Table 2.6: Early years – risk factors 65

Table 3.1: Employment in seaside towns, 2001 101
Table 3.2: Net in-migration of people of working age to seaside towns, 1971–91 104
Table 3.3: Reasons for moving to the seaside, by length of time in town 104
Table 3.4: Understanding resort change: elements of ‘change’ and influences on social exclusion 113

Table 4.1: Summary of research methodology 121
Table 4.2: Identifying seaside resorts 133
Table 4.3: Population of England’s seaside resorts, 2001 137
Table 4.4: The urban classification of areas 138
Table 4.5: National deprivation quartiles for local authority districts 139
Table 4.6: National deprivation quartiles for LSOAs 139
Table 4.7: National deprivation deciles for LSOAs 140
Table 4.8: Summary list of indicators of resort socio-economic performance 146
Table 4.9: Rationale for use of indicators 148
Table 4.10: Highly correlated variables 157
Table 4.11: Variables with an MSA value below 0.5 158
Table 4.12: Initial PCA for the 42 variables of resort socio-economic performance 162
Table 4.13: PCA (with varimax rotation) loadings for eight components 165
Table 4.14: Appropriateness of PCA – results from the assumption tests 166
Table 4.15: PCA (with varimax rotation) loadings for seven components 168
Table 4.16: Summary descriptions of component characteristics 170
Table 4.17: Agglomeration schedule 179
Table 4.18: Reformed agglomeration table 179

Table 5.1: Distribution of districts by region, 2010 183
Table 5.2: Per cent of districts in England’s most deprived 50 per cent, 2010 184
Table 5.3: Per cent of districts in England’s most deprived 25 per cent, 2010 185
Table 5.4: P values of the Pearson’s chi-square test
(Inland x Coastal; Inland x Seaside; Coastal x Seaside) 190
Table 5.5: P values of the Pearson’s chi-square test
(Seaside with resort x Inland, Coastal and Seaside without resort districts)

Table 5.6: P values of the Pearson’s chi-square test
(Seaside with resort x Inland, Coastal and Seaside without resort districts)

Table 5.7: Seaside with resort districts grouped ‘domain ranking’ and deprivation level

Table 5.8: Data profile of ‘inland’, ‘coastal’ and ‘seaside’ local authority districts

Table 5.9: Per cent of LSOAs in England’s most deprived 50 per cent, 2010

Table 5.10: Per cent of LSOAs in England’s most deprived 25 per cent, 2010

Table 5.11: P values of the Pearson’s chi-square test
(Seaside with resort LSOAs x Inland, Coastal and Seaside without resort LSOAs)

Table 5.12: Seaside with resort districts with the highest proportion of their LSOAs in the most deprived decile on IMD 2010 and change since 2004

Table 5.13: P values of the Pearson’s chi-square test – deprivation level by settlement type

Table 5.14: Correlation coefficients between IMD and domain ranks in seaside resorts

Table 5.15: Cross tabulation of resort LSOAs in IMD quartiles in 2004 and 2010

Table 5.16: Comparison of Indices of Deprivation 2004 and 2010: Resort LSOAs

Table 5.17: Change in distribution of resort LSOAs by IMD percentiles, 2004 and 2010

Table 5.18: Number of resorts with at least one LSOA in the upper quartile

Table 5.19: Number of domains on which the most deprived 25% of resort LSOAs are in the most deprived quartile, 2010

Table 5.20: Particularly deprived English seaside resorts, 2010

Table 5.21: P values of the Pearson’s chi-square test – deprivation level by resort size

Table 5.22: Correlation coefficients between IMD and deprivation domains

Table 5.23: Number and per cent of seaside resorts with above average levels of deprivation

Table 6.1: Comparative analysis of mean values for population composition variables

Table 6.2: Factors of population composition influencing deprivation in seaside resorts

Table 6.3: Migration, total and by age

Table 6.4: Comparative analysis of mean values for area condition variables

Table 6.5: Factors of area condition influencing deprivation in seaside resorts

Table 6.6: Overview of clusters – means and standard deviations for principal components

Table 6.7: Matrix of outcomes, individual components, four clusters

Table 6.8: Matrix of outcomes, original input variables, four clusters

Table 6.9: Mean values for original input variables in four-cluster solution

Table 6.10: Distribution of most deprived resort LSOAs by cluster and deprivation level

Table 6.11: Number of LSOAs in each resort in each cluster
List of Figures

Figure 1.1: The relationship between poverty, deprivation and social exclusion	8
Figure 2.1: The Gini coefficient	43
Figure 2.2: Deep and persistent social exclusion	56
Figure 2.3: A ‘lifecycle approach’ with specific target groups	65
Figure 3.1: Issues in socio-economic seaside resort change	75
Figure 3.2: The Tourist Area Life Cycle	82
Figure 3.3: The English seaside resort in its wider context	88
Figure 3.4: Most and least deprived LSOAs in England, 2007	107
Figure 3.5: Economic performance – the variation between the larger seaside resorts	107
Figure 3.6: Issues for residents of seaside resorts	110
Figure 4.1: Research model - social exclusion in English seaside resorts	118
Figure 4.2: Index of Multiple Deprivation – indicators, domains and relative weighting	124
Figure 4.3: The area classification of local authority districts	131
Figure 4.4: The location of ‘coastal’ and ‘seaside’ districts, England, 2001	132
Figure 4.5: Location of England’s seaside resorts	136
Figure 4.6: Scree plot from a PCA of 42 variables of resort performance	163
Figure 4.7: Obtaining each LSOA’s component scores	172
Figure 4.8: Hierarchical cluster analysis	173
Figure 4.9: Diagram showing between-cluster and within-cluster variation	174
Figure 4.10: Hierarchical clustering methods	176
Figure 4.11: Measures of similarity or distance for interval data	177
Figure 5.1: Distribution of deprivation across ‘inland’, ‘coastal’ and ‘seaside’ districts, 2010	202
Figure 5.2: Distribution of deprivation across ‘coastal’, ‘seaside with resort’ and ‘seaside without resort’ districts, 2010	203
Figure 5.3: Distribution of ‘resort’ LSOAs by deprivation quartile against domains, 2010	211
Figure 5.4: Indices of Deprivation domain quartile distribution of LSOAs for the ‘mid’ sized English seaside resorts, the ‘large’ seaside resorts and England, 2010	224
Figure 5.5: Indices of Deprivation domain quartile distribution for the large English seaside resorts and England, 2004 and 2010	228
Figure 5.6: Indices of Deprivation domain quartile distribution for the mid-sized English seaside resorts and England, 2004 and 2010	228
Figure 5.7: IMD quintile distribution for the ‘large’ seaside resorts and England, 2010	231
Figure 5.8: IMD quintile distribution for mid-sized seaside resorts and England, 2010	232
Figure 5.9: Range of LSOA ranks on IMD for seaside resorts, 2010	234
Figure 5.10: Ranking of the large seaside resorts for IMD and (economic) domains, 2010	238
Figure 5.11: Ranking of the large seaside resorts for IMD and (social) domains, 2010	239
Figure 5.12: Ranking of the mid-sized seaside resorts for IMD and (economic) domains, 2010	240
Figure 5.13: Ranking of the mid-sized seaside resorts for IMD and (social) domains, 2010	241
Figure 6.1: Cluster profile for cluster 1 271
Figure 6.2: Cluster profile for cluster 2 272
Figure 6.3: Cluster profile for cluster 3 273
Figure 6.4: Cluster profile for cluster 4 274
Figure 6.5: The national pattern of excluded resort locality types 280
Figure 6.6: Area deprivation in Blackpool 287
Figure 6.7: Area deprivation in Brighton 288
District-level analysis – summary measures of multiple deprivation

Table A1:	Inland x Coastal, 2004	338
Table A2:	Inland x Coastal, 2007	340
Table A3:	Inland x Coastal, 2010	342
Table A4:	Inland x Seaside, 2004	344
Table A5:	Inland x Seaside, 2007	346
Table A6:	Inland x Seaside, 2010	348
Table A7:	Coastal x Seaside, 2004	350
Table A8:	Coastal x Seaside, 2007	352
Table A9:	Coastal x Seaside, 2010	354
Table A10:	Seaside (+R) x Inland, 2004	356
Table A11:	Seaside (+R) x Inland, 2007	358
Table A12:	Seaside (+R) x Inland, 2010	360
Table A13:	Seaside (+R) x Coastal, 2004	362
Table A14:	Seaside (+R) x Coastal, 2007	364
Table A15:	Seaside (+R) x Coastal, 2010	366
Table A16:	Seaside (+R) x Seaside (-R), 2004	368
Table A17:	Seaside (+R) x Seaside (-R), 2007	370
Table A18:	Seaside (+R) x Seaside (-R), 2010	372
Table A19:	Average rank of LSOA scores	374
Table A20:	Average rank of LSOA ranks	375
Table A21:	Extent rank	376
Table A22:	Local concentration rank	377
Table A23:	Income rank	378
Table A24:	Employment rank	379

District-level analysis – LSOA level indices of deprivation

Table A25:	Seaside (+R) x Inland – Overall Index of M.D.	380
Table A26:	Seaside (+R) x Inland – Income	381
Table A27:	Seaside (+R) x Inland – Employment	382
Table A28:	Seaside (+R) x Inland – Health	383
Table A29:	Seaside (+R) x Inland – Education	384
Table A30:	Seaside (+R) x Inland – Housing	385
Table A31:	Seaside (+R) x Inland – Crime	386
Table A32:	Seaside (+R) x Inland – Environment	387
Table A33:	Seaside (+R) x Coastal – Overall Index of M.D.	388
Table A34:	Seaside (+R) x Coastal – Income	389
Table A35:	Seaside (+R) x Coastal – Employment	390
Table A36:	Seaside (+R) x Coastal – Health	391
Table A37:	Seaside (+R) x Coastal – Education	392
Table A38:	Seaside (+R) x Coastal – Housing	393
Table A39:	Seaside (+R) x Coastal – Crime	394
Table A40:	Seaside (+R) x Coastal – Environment	395
Table A41:	Seaside (+R) x Seaside (-R) – Overall Index of M.D.	396
Table A42:	Seaside (+R) x Seaside (-R) – Income	397
Table A43:	Seaside (+R) x Seaside (-R) – Employment	398
Table A44:	Seaside (+R) x Seaside (-R) – Health	399
Table A45:	Seaside (+R) x Seaside (-R) – Education	400
Table A46:	Seaside (+R) x Seaside (-R) – Housing	401
Table A47:	Seaside (+R) x Seaside (-R) – Crime	402
Table A48:	Seaside (+R) x Seaside (-R) – Environment	403
Table A49:	District type LSOAs by national Index of M.D. deciles, 2010	404
Table A50: Number of LSOAs in the most deprived ten and twenty per cent of LSOAs in England by seaside district with resort on Index of M.D., 2010 405
Table A51: Number of LSOAs in the most deprived ten and twenty per cent of LSOAs in England by seaside district with resort on Index of M.D., 2007 406
Table A52: Number of LSOAs in the most deprived ten and twenty per cent of LSOAs in England by seaside district with resort on Index of M.D., 2004 407

LSOA-level analysis

Table A53: Resort x Other – Overall Index of M.D. 408
Table A54: Resort x Other – Income 409
Table A55: Resort x Other – Employment 410
Table A56: Resort x Other – Health 411
Table A57: Resort x Other – Education 412
Table A58: Resort x Other – Housing 413
Table A59: Resort x Other – Crime 414
Table A60: Resort x Other – Environment 415
Table A61: Comparing ID 2004 to ID 2010: ‘resort’ LSOAs in national quartiles 416
Table A62: Resort LSOAs by deprivation decile 418

Figure A1: Index of M.D. x Income deprivation relationship 419
Figure A2: Index of M.D. x Employment deprivation relationship 419
Figure A3: Index of M.D. x Health deprivation relationship 420
Figure A4: Index of M.D. x Education deprivation relationship 420
Figure A5: Index of M.D. x Crime deprivation relationship 421
Figure A6: Index of M.D. x Living environment deprivation relationship 421
Figure A7: Index of M.D. x Housing and services deprivation relationship 422

Resort-level analysis

Table A63: Large x Medium-sized resorts – Overall Index of M.D. 423
Table A64: Large x Medium-sized resorts – Income 424
Table A65: Large x Medium-sized resorts – Employment 425
Table A66: Large x Medium-sized resorts – Health 426
Table A67: Large x Medium-sized resorts – Education 427
Table A68: Large x Medium-sized resorts – Housing 428
Table A69: Large x Medium-sized resorts – Crime 429
Table A70: Large x Medium-sized resorts – Environment 430
Table A71: Seaside resorts grouped ‘domain ranking’ and deprivation level 431
List Appendix B Tables

Analysis of clusters

Table B1: Population composition - results of t-tests 440
Table B2: Area condition – results of t-tests 441
Table B3: Results of one-way ANOVA, seven components, four clusters 442
Table B4: The homogenous subsets from Tukey’s test for seven principal components 443
Table B5: Results of one-way ANOVA, original input variables, four clusters 444

Figure B1: Blackpool, Northwest England 446
Figure B2: Hastings, Southeast England 447
Figure B3: Folkestone, Southeast England 448
Figure B4: Scarborough, Yorkshire and the Humber 449
Figure B5: Clacton-on-Sea, East of England 450
Figure B6: Brighton, Southeast England 451
Figure B7: Lowestoft, East of England 452
Figure B8: Torquay, Southwest England 453
Figure B9: Southend-on-Sea, East of England 454
Figure B10: Heysham, Northwest England 455
Figure B11: Margate, Southeast England 456
Figure B12: Great Yarmouth, East of England 457
Figure B13: South Shields, Northeast England 458
Figure B14: Ramsgate, Southeast England 459
Figure B15: Morecambe, Northwest England 460
Figure B16: Falmouth, Southwest England 461
Figure B17: Skegness, East Midlands 462
Figure B18: Dover, Southeast England 463
Figure B19: Ilfracombe, Southwest England 464
Figure B20: Weston-Super-Mare, Southwest England 465
Figure B21: Weymouth, Southwest England 466
Figure B22: Whitby, Yorkshire and the Humber 467
Figure B23: Fleetwood, Northwest England 468
Figure B24: Penzance, Southwest England 469
Figure B25: Littlehampton, Southeast England 470
Chapter 1

Social Exclusion and the English Seaside: An Introduction

English seaside resorts have experienced relatively significant decline in recent decades and many of these formerly busy destinations appear to be suffering from a range of economic and social problems, which are more readily associated with inner-city areas (British Resorts Association, 2000; Agarwal and Brunt, 2005, 2006; Shared Intelligence, c2008; Coastal Communities Alliance, 2010). Although the problems of many seaside resorts, when taken together, relate broadly to social exclusion, little is known of the exact nature and extent of their problems and of the implications for resort planning and management. The report of the House of Commons Communities and Local Government (CLG) Select Committee on Coastal Towns brought this issue into sharp focus. The report outlined that ‘seaside towns are the least understood of Britain’s “problem” areas’ (CLG, 2007a: 42), indicating that the problems and challenges of seaside resorts have been insufficiently acknowledged and targeted. Indeed, seaside resorts have not generally been regarded as a discrete category of place in policy terms by Governments. As Local Futures (2007: 1) have noted, ‘there has been a significant urban focus within the government’s regeneration and renewal agenda, a policy framework that may exacerbate the challenges for some coastal areas because higher levels of investment are going to central urban areas’.

That said, in recent years, seaside resorts have moved up the regeneration agenda. The CLG Select Committee report, together with the evolving seaside regeneration framework, has spawned increasing demand for evidence of change at the national and local level. There has been an increasing interest in the processes driving area decline and renewal and the extent to which resorts and their neighbourhoods are susceptible to policy intervention (CLG, 2007a, 2007b). Thus, within the context of current academic and policy debates on social exclusion from which tourism has been conspicuously absent, the research reported here investigates characteristics associated with social exclusion in English seaside resorts, factors that influence social exclusion, and the implications for policy of such factors. Such
geographic research into disadvantage can contribute to understanding of the socio-economic ‘downside’ to the restructuring of seaside resorts. This improved understanding, at a local level, can be used to inform local policy and delivery to better target resources and support and thereby reduce inequalities and genuinely improve the day-to-day lives of people living in seaside resorts. But it can also inform a national level agenda from which local initiatives usually derive. This chapter introduces the concept of social exclusion outlining its fundamental features, explains the background to the research, details its aims and objectives, sets out potential uses of the research and summarises the structure of the thesis.

1.1 Understanding social exclusion

1.1.1 Historical origins of social exclusion

The concept of social exclusion emerged from sociological and social policy debates on poverty, inequality and the role of the welfare state. The concept’s birth is invariably located in France of the early 1970s, when it was coined by René Lenoir, a socialist government minister, to refer to the many groups of people without access to the employment-based social security system and thus unable to participate in different spheres of social and economic activity (Silver, 1994). Within France, the term later extended to incorporate new problems and social groups. It was used in the 1980s to refer to various types of social disadvantage related to social problems arising from economic upheavals and crises of the welfare state (Silver, 1994). The term was broadened to include spatial concentrations of disadvantage in the late 1980s, after a number of civil disturbances and violent incidents on French social housing estates (Silver, 1994). Exclusion came to denote a breakdown in social cohesion, a ‘rupture of the social bond’ considered central to the social contract between the republican state and its citizens (Silver, 1994: 535). In response to these concerns, strategies to promote social inclusion were key elements of French social policy through the 1980s and, under the presidency of Jacques Delores, began to influence European Commission policy.
The European Commission was a significant player in the dissemination of the concept. Since the 1990s, the Commission has promoted the concept of social exclusion rather than poverty within its political debates and social research programmes (Room, 1999). The shift of the Commission to exclusion issues met little obstacle at the national level. One of the reasons for this Europe-wide hospitality toward the concept was that:

‘Member states adhered to different definitions of poverty and consequently some denied that poverty was a problem within their borders. This hostility towards the idea of poverty was coupled to the enthusiasm of some member states for the notion of social exclusion. … The notion of social exclusion thus offered a way of avoiding a possible impasse by allowing member states to commit themselves to an imprecise, but nonetheless worthy-sounding mission’ (Marsh and Mullins, 1998: 751).

While its relative vagueness was a key quality leading European Union member states to adopt the concept, the UK New Labour government elected in May 1997 embraced the concept of social exclusion with considerable enthusiasm and gave it a twist. Originally the Labour Party saw the concept ‘as rather unhelpful, combining as it did the traditional alleged imprecision of the French social philosophical debates with the echoes of earlier, discredited right-wing accounts of the “underclass”’ (Room, 1999: 166). But this situation changed. The concept was linked to the consensual ‘Third Way’ thinking underpinning New Labour’s political economy and:

‘[Tony Blair] established in Downing Street itself a Policy Unit concerned with social exclusion; the Economic and Social Research Council established at the LSE [London School of Economics] a high profile Centre for the Analysis of Social Exclusion; and “social exclusion” recurs as a central point of reference throughout a wide range of government policy documents’ (Room, 1999: 166).

By the time that the New Labour government entered its third term in office, Levitas (2005: ix) observed:

‘The language of social exclusion is no longer the preserve of a temporary specialist unit. It has become commonplace in public discourse, and pervades government policy’.
Thus, social exclusion made its first appearance on the UK stage in the late nineties. However, it is now widely used by government and appears widely in the lexicon of academics, policy-makers and development practitioners. One reason for the rapid uptake of the term may be that it ‘describes a phenomenon that already existed, but lacked a suitable name’ (Page, 2000: 4). So what is it and how is it different from the more familiar concepts of “poverty” and "deprivation"?

1.1.2 Differences between poverty, deprivation and social exclusion

It is crucial to draw a firm distinction between social exclusion and poverty when seeking to understand the concept of social exclusion and its many causes and consequences. Poverty should be seen as just one dimension of exclusion. The concept of poverty has evolved over the last century. When Seebohm Rowntree attempted to define poverty in the latter part of the nineteenth century, he did it in absolute terms and as minimum subsistence. A family would be considered to be living in poverty if their ‘total earnings are insufficient to obtain the minimum necessaries for the maintenance of merely physical efficiency’ (Rowntree, 1901: 186). The key weakness of this definition of poverty is that it fails to recognise the differing circumstances – temporal and spatial – and therefore income needs of different members of the global population, assuming that ‘there is always a fixed level of basic needs and an income which is insufficient to provide these needs defines the poverty line’ (Foley, 1999: 3).

In the second half of the twentieth century, the relevance of the absolutist or subsistence definition of poverty in industrialised countries became questioned by academics and social reformers. The general level of living had improved and most people in welfare states had a guaranteed minimum income. For these reasons, poverty was redefined in relative terms, placing emphasis on the distribution of income and wealth in a society. In measuring relative poverty, some analysts have priced a ‘basket of goods’ to set a poverty level, while others have used market research techniques to find out what society at large generally thinks
is a reasonable minimum standard of living (Bradshaw and Mayhew, 2010). The most commonly used definition of poverty in Britain is that used by the European Union: low-income or impoverished households are defined as those with incomes of less than 60% of the national median income level (minus housing costs) (Joseph Rowntree Foundation, 2013).

What all these measures have in common is that they are to do with income and how it is distributed. During the 1970s, there was a crucial change in the understanding of poverty in the academic as well as the public debate. There was a change in the focus from income to multidimensional poverty. The work of Peter Townsend is crucial here. Townsend (1979) defined multidimensional poverty as relative deprivation and argued that people could be considered as living in poverty:

‘when they lack the resources to obtain the types of diet, participate in the activities and have the living conditions and amenities which are customary, or at least widely encouraged or approved, in the societies to which they belong. Their resources are so seriously below those commanded by the average individual or family that they are, in effect, excluded from ordinary living patterns and activities’ (Townsend, 1979: 31).

This definition raises awareness of the adequacy of resources needed to avoid poverty not only in terms of the ability to obtain material items (e.g., diet and amenities) but also so that people can avoid being excluded from ordinary living patterns and activities. This latter feature suggests that exclusion is a sub-component of the broader notion of deprivation, although this is a misleading assessment, as explained later.

The key feature of the definition of deprivation that links it to the notion of poverty is its emphasis on a lack of resources as being the underlying cause of deprivation. It follows that if deprivation can be defined, it can help to identify who is in poverty and also how much income is needed to avoid it. Although income is a primary determinant of the standard of living of most people, an exclusive reliance on income poverty as a measure of deprivation is problematic for the following reasons. First, it assumes that the (only) unit of analysis is the
individual/household. Second, it assumes that deprivation should be measured solely in terms of outcomes as opposed to risks or conditions. Third, it does not consider broader aspects of quality of life, such as, for example, neighbourhood, health, environment, access to transport and services, location and general life opportunities. Lastly, it narrows the focus of policy.

These wider issues have, since the social policy debates of the 1980s, increasingly been brought together under the term ‘social exclusion’. Although there is a wide range of views about what the term social exclusion means (Silver, 1994), it tends to be defined in very similar ways to Townsend’s view of relative deprivation. However, where poverty and deprivation research has emphasised lack of financial and material resources at the disposal of an individual or household (Walker, 1995), social exclusion emphasises a wider range of factors – social, political as well as economic – which may lead to individuals, population groups or geographical communities living a life which differs significantly from the mainstream of society. There is a stronger emphasis in the exclusion literature on relational issues, that is, ‘inadequate social participation, lack of social protection, lack of social integration, and lack of power’ (Room, 1995b: 105). Social exclusion is therefore a broader concept than poverty and deprivation ‘encompassing not only low material means but also the inability to participate effectively in economic, social, political and cultural life, and in some characterisations, alienation and distance from mainstream society’ (Duffy, 1998: 241). According to Room (1995a: 243), it is a dynamic process ‘of becoming detached from the organisation and communities of which society is composed and from the rights and obligations that they embody’, and it may vary between the individual, household and the local community in its spatial dimension. Table 1.1 summarises the differences between the concepts of poverty, deprivation and social exclusion.
Table 1.1: Comparison of poverty, deprivation and social exclusion

<table>
<thead>
<tr>
<th>Poverty</th>
<th>Deprivation</th>
<th>Social exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-dimensional</td>
<td>Multi-dimensional</td>
<td>Multi-dimensional</td>
</tr>
<tr>
<td>Physical needs</td>
<td>Physical needs</td>
<td>Physical needs</td>
</tr>
<tr>
<td>Material needs</td>
<td>Material needs</td>
<td>Societal participation</td>
</tr>
<tr>
<td>Distributional</td>
<td>Distributional</td>
<td>Distributional</td>
</tr>
<tr>
<td>Static</td>
<td>Static</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Individual</td>
<td>Individual</td>
<td>Individual</td>
</tr>
<tr>
<td>Household</td>
<td>Household</td>
<td>Household</td>
</tr>
<tr>
<td>Community</td>
<td></td>
<td>Community</td>
</tr>
</tbody>
</table>

Source: Collated from Barnes (2005), Berghman (1995), Room (1995a)

The conceptual distinction is now clear. Poverty is an outcome, denoting an inability to achieve an acceptable standard of living because of a lack of financial resources. Deprivation is different from poverty. Deprivation is multi-dimensional, whereas lack of financial resources (i.e., poverty) is one-dimensional. Deprivation is concerned with circumstance, particularly material, and how this impacts upon the condition of people’s lives (Berghman, 1995). Thus, the concepts of poverty and deprivation deal with static outcomes. Social exclusion, in contrast, is a concept that refers to ‘the multiple and changing factors resulting in people being excluded from the normal exchanges, practices and rights of modern society’ (Commission of the European Communities, 1993: 1). The factors linked to social exclusion are summarised by Percy-Smith (2000) and range from globalisation and associated structural changes, universalistic forms of inequality, including segregation within a system of social processes, for instance, through class, race and gender discrimination or denial of basic citizenship rights, to inequality described in more particular terms. The latter includes inadequate rights in housing, education, health and access to labour markets. Other aspects are as diverse as the local context and, in particular, the effects of population, place and location.

The crucial point here is that, poverty and/or deprivation are important and possible, but not necessary, ingredients of social exclusion. A visual annotation of the relationship between poverty, deprivation and social exclusion is illustrated in Figure 1.1. As can be seen, while there is a core of disadvantaged people who experience all three conditions, there are others who face only a single problem, or a combination of two of them. In summary then, poverty, deprivation and social exclusion are distinct, but overlapping concepts.
1.1.3 Social exclusion as a contested concept

Despite this distinction from poverty and deprivation, ‘social exclusion is a contested concept’ (Silver, 1994: 540). There is no exact or generally agreed definition. This point is exemplified by reference to the varying definitions that have been put forward for its meaning, as shown in Table 1.2. The term ‘social exclusion’ has been used to describe: groups at risk of exclusion; what people are excluded from; the states or problems associated with exclusion; the processes involved and levels at which they operate; and, the agents involved. This contested nature is also evident in the way that social exclusion has been defined across Europe. There are significant differences, reflecting diverse historical and political traditions (Silver, 1994). Not only are there a variety of national discourses about social exclusion, but also competing versions within individual countries. In the UK context, it is possible to detect three competing discourses (Levitas, 2005). These discourses range from: a redistributionist discourse (RED) within which social exclusion is associated with poverty; a social integrationist discourse (SID) which considers exclusion primarily in terms of labour market detachment; and, a moral underclass discourse (MUD) which relates to the idea of the underclass. Levitas argues RED, SID and MUD are:
‘... ways of thinking about exclusion that imply different strategies for its abolition. In RED, the assumption is that the resources available in cash or kind to the poor need to be increased both relatively and absolutely, implying both improved levels of income maintenance and better access to public and private services. In SID, the solution is increased labour market participation, for paid work is claimed to deliver inclusion both directly and indirectly through the income it provides. In MUD, the emphasis is on changing behaviour through a mix of sticks and carrots – manipulation of welfare benefits, sanctions for non-compliance and intensive social work with individuals’ (Levitas, 2005: x).

Further evidence for a lack of any consensus comes from the work of Veit-Wilson (1998) who distinguished between ‘weak’ and ‘strong’ conceptions of social exclusion in Europe, whereby:

‘In the ‘weak’ version of this discourse, the solutions lie in altering these excluded people’s handicapping characteristics and enhancing their integration into dominant society. ‘Stronger’ forms of this discourse also emphasise the role of those who are doing the excluding and therefore aims for solutions which reduce the powers of exclusion’ (Veit-Wilson, 1998: 45).

Put differently, the weak version seeks to change socially excluded individuals, groups and communities. Addressing the capacities of the socially excluded is not only what the stronger version focuses on, looking additionally at structural processes, social mechanisms and the different institutions which lead to, and affect patterns of, exclusion. Thus, the strong version is more about change at societal level.
Table 1.2: Facets of ‘social exclusion’

<table>
<thead>
<tr>
<th>The groups at risk of being excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>For example, Lenoir (1974) quoted in Silver (1994: 532) wrote:</td>
</tr>
<tr>
<td>‘the excluded made up one tenth of the French population: the mentally and the physically handicapped, suicidal people, aged invalids, abused children, drug addicts, delinquents, single parents, multi-problem households, marginal, asocial persons, and other social misfits’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What people are excluded from</th>
</tr>
</thead>
<tbody>
<tr>
<td>For example, Silver (1994: 541) notes that:</td>
</tr>
<tr>
<td>‘the literature says people may be excluded from: a livelihood; secure, permanent employment; earnings; property, credit or land; housing; the minimal or prevailing consumption level; education, skills and cultural capital; the benefits provided by the welfare state; citizenship and equality before the law; participation in the democratic process; public goods; the nation or the dominant race; the family and sociability; humane treatment, respect, personal fulfilment, understanding’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The states or problems associated with social exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>For example, New Labour’s Social Exclusion Unit (1997: 1) defined social exclusion as:</td>
</tr>
<tr>
<td>‘a shorthand for what can happen when people or areas suffer from a combination of linked problems such as unemployment, poor skills, low incomes, poor housing, high crime environments, bad health and family breakdown’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The processes driving exclusion and the levels at which they operate</th>
</tr>
</thead>
<tbody>
<tr>
<td>For example, Estivill (2003:19) argues that:</td>
</tr>
<tr>
<td>‘Social exclusion must… be understood as an accumulation of confluent processes with successive ruptures arising from the heart of the economy, politics and society, which gradually distances and places persons, groups, communities and territories in a position of inferiority in relation to centres of power, resources and prevailing values’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The agents involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>For example, Percy-Smith (2001: 6) makes the point that:</td>
</tr>
<tr>
<td>‘While the causes of social exclusion may be structural, its effects can be ameliorated or exacerbated by the attitudes, activities and policies of governmental bodies’</td>
</tr>
</tbody>
</table>

Source: Collated from Mathieson et al. (2008), Millar (2007), Peace (2001)

1.1.4 Previous research into social exclusion in the UK

Debate over the definition of social exclusion has not prevented researchers from identifying and analysing it, and the definition itself has evolved as new forms of exclusion have emerged, with the current position neatly summarised by New Labour’s David Miliband in 2006. He argued that in the UK ‘social exclusion exists in wide, deep and concentrated forms, and it is important not to confuse them’ (Miliband, 2006: 3). Wide exclusion refers to
the large number of people disadvantaged on a single or small number of domain-specific indicator(s). *Deep exclusion* refers to those who are disadvantaged on multiple and overlapping dimensions, while *concentrated exclusion* refers to the geographic concentration of problems and to ‘area exclusion’. Deep exclusion and ‘area exclusion’ occur where different factors combine to trap individuals and areas in a spiral of disadvantage, resulting in severe negative consequences for quality of life, well-being and future life chances. ‘Here we get closer to a more recognisable definition of social exclusion reflecting the most disadvantaged in society’ (Miliband, 2006: 7).

But social exclusion is not particularly well understood in the UK, primarily because academic study until recently was couched in terms of poverty and deprivation and focused on attempts to discover the distribution, causes and consequences of social problems relating to the lack of financial and/or material resources (Walker, 1997). However, it is now widely recognised by academics that analyses of single problems associated with social exclusion, as for example through studies of employment or studies of income poverty, must be supplemented by analyses based on more general definitions of the problem (Millar, 2007). ‘Social exclusion’ itself is universally regarded in the academic and policy literature as involving severe, multi-dimensional disadvantage. A common approach to the analysis of social exclusion is then, as in the previous paragraph, to focus on disadvantaged groups or disadvantaged areas amongst whom, or within which, the incidence of disadvantage is disproportionately high.

To date, academic research and policy interest has largely focused on specific groups of people thought to be ‘at risk’ of or presently socially excluded, such as ex-offenders (SEU, 2002a), teenage runaways (SEU, 2002b), children in care (SEU, 2003) and older people (Scharf *et al.*., 2002; Davidson *et al.*, 2003; SEU, 2005, 2006). There has also been a specific focus on particular social issues, such as truancy and school exclusion (SEU, 1998a), rough sleeping (SEU, 1998b) teenage pregnancy (SEU, 1999a), young people not in education, employment or training (SEU, 1999b), crime (Grieve and Howard, 2004; Hale, 2005),
housing (Please, 1998; Ratcliffe, 1998; Anderson and Sims, 2000) and long-term unemployment (Atkinson, 1998). Moreover, with the exception of a few studies that attempt to monitor social exclusion nationally (e.g., Aldridge et al., 2011; Burchardt et al., 1999; Gordon et al., 2000), the vast majority of research has been undertaken within depressed inland inner-city neighbourhoods and some declining rural environments (Brennan et al., 1998, 2000; Chapman et al., 1998; Commins, 2004; Countryside Agency, 2000; Glennerster et al., 1999; Lupton, 2001; Power and Wilson, 2000: Shucksmith and Chapman, 1998). Incidentally, such areas have been subject to considerable social policy intervention (i.e., New Labour regeneration and neighbourhood renewal initiatives), linked to attempts to reduce the geographic divide between Britain’s most deprived areas and the ‘mainstream of society’ (SEUb, 2001).

It is somewhat ironic that much of the empirical literature on social exclusion (cited above) has focused on patterns rather than processes of generalised disadvantage. The empirical literature has concentrated on the characteristics and conditions of vulnerable groups and, to a lesser extent, specific disadvantaged areas. Relatively little attention has been paid to the processes that put individuals, population groups or geographical communities at risk of being socially excluded, or which protect them from it, and even less to identifying those social mechanisms, structures, and the different institutions which endorse and are thus responsible for accommodating various acts of exclusion. Perhaps the relative neglect of ‘exclusionary processes’ is because such processes are not readily amenable to measurement when compared to ‘states of exclusion’.

The latter strand of research has, for the most part, approached social exclusion from the vulnerable group perspective, rather than from the domain perspective. Arguably, vulnerability is highly dependent on context. For instance, while older people are often described as vulnerable, it is not their age that causes the vulnerability but rather they may have pre-existing health problems, or live in isolation or on a low income. The crucial point here is that while vulnerable groups may contain some of the most severely socially excluded
people, they also have a range of social and economic problems which are shared by larger groups. However, previous research has rarely examined social exclusion across a spectrum of social groups, or across a number of exclusion domains, in entire communities or the population at large. There has been an almost exclusive focus on vulnerable groups and/or specific disadvantaged localities (i.e., policy-designated urban neighbourhoods or rural settlements).

Studies that are concerned with the condition (or the state) of social exclusion variously examine the levels of social exclusion, the risk of social exclusion according to socio-economic and demographic factors, the nature of the links which exist between different elements which may constitute the phenomenon, whether and how income and material exclusion is related to other forms of exclusion and, where longitudinal data are available, the persistence of social exclusion over time (e.g., Aldridge et al., 2011; Burchardt et al., 1999; Gordon et al., 2000; Millar, 2007). This approach to studying social exclusion is through the construction of statistical indicators, often with the purpose of informing and guiding resource allocation or of supporting a case for resource targeting. That there should be a plethora of such studies is perhaps not surprising giving that, as demonstrated in Chapter Two, New Labour’s strategy placed a strong emphasis on ‘states of multiple deprivation’, thereby giving prominence to marginalised groups and, to a lesser extent, marginalised areas as the defining feature of social exclusion.

The focus of poverty and deprivation policy is also important as it has influenced social exclusion policy. For the most part, the wide social exclusion experienced by a larger population, including those living in deprived neighbourhoods and those in poverty, has been addressed through individually targeted measures. There has been a strong emphasis on counting and targeting the poor (as individuals) through the tax and benefit systems. Doubtless, financial transfers through the tax and benefit systems are useful for addressing the poverty/deprivation suffered by the large number of people excluded on a single or small number of economic indicators. However, ‘social exclusion is a multidimensional
phenomenon that cannot be captured by measures of income only, or even material resources more broadly, but must include a wider range of other factors’ (Millar, 2007: 4). The crucial point here is that, while the use of means testing considers some household factors (e.g., income, size and type of family, living in a jobless household), this approach does not take into account the fact that an individual’s experience (i.e., socio-economic characteristics) is also generally shaped by i) household factors such as race and social class and ii) local-area factors (e.g., particularities of population, place and location).

Indeed, within the small but growing contemporary international ‘area effects’ literature, it has been argued that processes within localities and the relationship to the wider area (i.e., the town/city, city region, district or region) are both important because of their likely determining influence on an individual’s life opportunities and living standards (e.g., Ellen and Turner, 1997; Atkinson and Kintrea, 2001; Forrest and Kearns, 2001; Lupton, 2003). However, this idea that where people live (because of the concentration of socially deprived/excluded individuals and households within the local population or because of the nature of the area itself) affects their ability to participate in key domains of modern life has not been universally accepted. Many writers and particularly politicians have tended to dismiss or downplay the role of area effects, suggesting that family and the individual are more important (e.g., Gordon, 1996; Kleinman, 1999; Buck and Gordon, 2004). The role of geography or space per se has therefore added a further dimension to the social exclusion debate. At the present time, there is no clear consensus of evidence emerging. Area studies in Britain have yet to demonstrate how social exclusion develops, to what extent it is an individual or locational problem, and how important local-area factors are in this process.

Treatment of social exclusion in Britain may be criticised further as academic research and policy attention of social exclusion has been geographically constrained to inland inner-city neighbourhoods and some rural environments, and has neglected coastal areas. Consequently, little is known about social exclusion in English seaside resorts. This lacuna is surprising given that previous research noted that many English seaside resorts are in decline.
(Cooper, 1997; Agarwal, 1999, 2002; Department of Culture, Media and Sport, 1999; Department of Trade and Industry, 1999; English Tourism Council, 2001) and are experiencing severe economic, social and environmental difficulties (British Resorts Association, 2000; Beatty and Fothergill, 2003; Agarwal and Brunt, 2005, 2006; CLG, 2007; Shaw and Coles, 2007; Shared Intelligence, c2008; Coastal Communities Alliance, 2010; Centre for Social Justice, 2013), which, when taken together, relate broadly to social exclusion. Perhaps the lack of research is because seaside resorts are traditionally associated with the ‘pleasure-periphery’ (Turner and Ash, 1975) rather than as production spaces subject to economic and social change.

1.2 Social exclusion and English seaside resorts: the relevance

While there is widespread recognition that many English seaside resorts are exhibiting characteristics associated with social exclusion, its presence is unclear as many are not displaying any of the obvious signs of decline, such as loss of their tourism economic base, which has invariably been blamed for their predicament. This point is illustrated by the only national study of the economies of seaside resorts. Beatty and Fothergill (2003) assessed the economies of forty-three resorts over the period 1971-2001 and found that, far from declining, seaside resorts are experiencing increases in employment and population, the latter fuelled by steady flows of in-migration. Thus, Beatty and Fothergill (2003) present evidence that employment in seaside resorts is growing and that they remain attractive places to live and work.

However, the picture is actually more complex. Paradoxically, although seaside resorts may be growing in terms of population and employment, claimant unemployment is ‘well above the level in surrounding areas and in a few towns it is high by national standards’ (Beatty and Fothergill, 2003: 6). Moreover, there are ‘high levels of recorded permanent sickness among the working age population of seaside towns’ (Beatty and Fothergill, 2003: 41), which hides widespread unemployment. In emphasising coastal employment growth,
moreover, Beatty and Fothergill (2003) may be glossing over the extent to which many of the jobs are taken by in-migrants than local residents. In addition, the quality of the jobs created is questionable, with many in the low-wage service sector, part-time and seasonal. This criticism aside, the growth in employment may explain the reluctance of government to acknowledge the social and community issues facing seaside resorts.

It was not until 2006 that Government, led by the CLG, sent out a call for evidence. The CLG Commons Select Committee Inquiry received written submissions on coastal issues from local authorities and coastal organisations, visited several resorts, and invited experts to a number of oral evidence sessions at Westminster. In March 2007, the CLG Select Committee published a report in which they used the terms ‘coastal towns’ and ‘seaside resorts’ interchangeably, which is misleading, and identified several common challenges facing such areas (see Table 1.3). It was noted that coastal areas tend to have relatively low wage, low-skill economies with a seasonality of employment, suggesting a tendency for economic under-performance. The Committee said it was ‘particularly struck by the demography of many coastal towns, where there is a combination of trends occurring, including the outward movement of young people and the inward movement migration of older people’ which leads to a burden on the local public sector (CLG, 2007a: 3). The committee’s report highlighted a range of housing issues in seaside resorts, including lack of affordability (owing to high levels of second home ownership), empty homes but conversely homelessness and disproportionate levels of unsuitable accommodation. It also noted relatively high numbers of houses in multiple occupations and vulnerable children and adults. Vulnerable people, in need of care or support, are more likely to move to seaside resorts because of the availability of low cost accommodation. Again, this in-migration is burdensome to the local public sector. The committee’s report also drew attention to the Government’s own statistics which showed a disproportionately high rise in the number of people claiming sickness and disability benefits in seaside resorts, a trend which has never been identified by Government and is also ‘likely’ to be linked to inward migration (CLG, 2007a: 24).
Table 1.3: Key issues facing seaside resorts

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes in tourism trends</td>
<td>- evolving tourist market (e.g., day trippers, short breaks, second holidays, conferences)</td>
</tr>
<tr>
<td>Low wage rates, part-time and seasonal employment</td>
<td></td>
</tr>
<tr>
<td>High levels of deprivation indicators</td>
<td>- poor levels of education, skills and training</td>
</tr>
<tr>
<td>High levels of in-migration of</td>
<td>- young, low-skilled migrants</td>
</tr>
<tr>
<td></td>
<td>- people aged 35 and over</td>
</tr>
<tr>
<td></td>
<td>- people aged 65 and over</td>
</tr>
<tr>
<td>High levels of out-migration of youth for education and opportunities</td>
<td></td>
</tr>
<tr>
<td>A range of housing issues, including</td>
<td>- a lack of affordable housing due to high levels of second-home ownership</td>
</tr>
<tr>
<td></td>
<td>- disproportionate levels of unsuitable accommodation</td>
</tr>
<tr>
<td></td>
<td>- high levels of Houses of Multiple Occupation associated with tourist accommodation stock and transient population</td>
</tr>
<tr>
<td>Transient populations</td>
<td>Many ‘vulnerable’ residents</td>
</tr>
<tr>
<td></td>
<td>- on sickness-related benefits, in care homes and hostels (young and old people)</td>
</tr>
<tr>
<td>Peripheral locations and weak transport links</td>
<td>Source: Compiled from CLG (2007a)</td>
</tr>
</tbody>
</table>

The Committee felt that the New Labour government had neglected the particular needs of coastal areas for far too long. The government was also rebuked for its poor understanding of how national policies and systems, such as the regulation of private rented housing and the benefits system, impact on seaside resorts specifically. Perhaps most damning of all is the criticism of a lack of cross-departmental liaison on seaside resorts because ‘the Government does not sufficiently appreciate the needs of coastal towns’ (CLG, 2007a: 42).

The Committee felt that there were a number of areas that were in need of specific government action. Most significantly, it called for a national approach to be adopted by the government in addressing the social challenges of the seaside, together with the proactive management of seaside resorts (CLG, 2007a).

However, the government dismissed the report and its recommendations. The assessment was that, because the experience of different coastal areas is very varied, a national approach to the issues is not justified (HM Government, 2007). Angry exchanges followed. The chair of the Select Committee told CLG secretary Hazel Blears of her committee’s:
'deep dissatisfaction with the Government’s response to our report on Coastal Towns. The response appeared to fail to grasp the central premise of our report, that many coastal towns face significant challenges based on their combination of characteristics, and that as such coastal towns warrant specific attention and action by Government to address their challenges’ (CLG, 2007b: 6).

The Select Committee’s dissatisfaction was shared by the Director of the British Resorts and Destinations Association, who told Blears it was ‘difficult, in polite terms, to accurately describe to you the depth of displeasure that the government response has created among many Elected Members from all parties, public sector officers and our colleagues and partners in the private sector’ (quoted in CLG, 2007b: 5). Prompted by these criticisms, the CLG took the unusual step of issuing a second response, which has created a cross-departmental working group and a nationwide regeneration network to examine the problems affecting England’s seaside resorts (CLG, 2007b). The New Labour government called for more coastal research, noting that ‘there is not enough research into coastal towns to form a true picture of the issues involved’ (CLG, 2007b: 8).

Despite such calls, the only major national study of the multifaceted problem of social exclusion in English seaside resorts, by Agarwal and Brunt (2006), revealed variability in its manifestation. Based on the profiling and analysis of selected Census (2001) variables relating to key socio-economic characteristics, they found that, although there was remarkable similarity in nature and extent of multiple deprivation being experienced and that all 87 seaside resorts had several socio-economic characteristics in common, there was evidence that some of the most affected were characterised by particular socio-economic variables (Table 1.4). Such a finding enabled the identification of a typology which distinguished ‘all resorts’ from others labelled ‘young’, ‘old’ and ‘wealthy’ on the basis of specific socio-economic characteristics exhibited. The typology developed not only suggests that ‘social exclusion is affecting differentially different sections of the community’, but also implies that ‘there may be several different causes of multiple deprivation’ (Agarwal and Brunt, 2006: 667). They concluded that social exclusion appears to be ‘a more serious and complex problem’ in English seaside resorts ‘than has formerly been recognised’ (Agarwal and Brunt, 2006: 669).
Table 1.4: Typology of the socio-economic characteristics of English seaside resorts

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘All resorts’</td>
<td>High proportions in terms of average age, retired, white, with long-term illness or permanently sick or disabled, providing unpaid care, unemployed, no qualifications, one person households, lone parents with dependent children, without central heating, without car</td>
</tr>
<tr>
<td>‘Young’</td>
<td>As above but higher proportions of lone parents and unemployed</td>
</tr>
<tr>
<td>‘Old’</td>
<td>As above but particularly elderly population, lower unemployment but higher health related problems</td>
</tr>
<tr>
<td>‘Wealthy’</td>
<td>As above but pockets of deprivation masked by wealthier wards, often with high average house prices</td>
</tr>
</tbody>
</table>

Source: Agarwal and Brunt (2006: 666)

Explanations for the existing conditions within English seaside resorts may be drawn from theoretical similarities between the causes and consequences of social exclusion and resort decline. These changes relate to the shift from Fordism, a regime based on relatively stable relations between production and consumption, to post-Fordism, a regime based on more flexible modes of accumulation (Dicken, 1998). This shift has contributed to heightened levels of competition and to the widespread economic restructuring of national, regional and local economies (Britton, 1991). With respect to social exclusion, the consequences of these structural changes have been precarious forms of employment, insecurity of employment and unemployment, especially, but not exclusively, within areas based on primary and manufacturing industries (Bhalla and Lapeyre, 2004; Munck, 2004). In terms of resort decline, post-Fordist related processes have undermined the appeal of the mass packaged and standardised seaside resort holiday (Agarwal, 2002). These processes include: flexible modes of production which have contributed to the growth of non-seaside destinations and products; the search for expanded capital accumulation as exemplified by the continuing internationalisation of the tourism industry; and, consumption changes toward preferences for more individual and niche forms of holidays demanded by the new or post-modern tourist (Agarwal, 2002). Many English seaside resorts are now dependent on a diminishing share of the holiday-market and on low-status, down-market visitors (Cooper, 1997).

Given the occurrence of these major transformations in the world economy, it therefore appears that English seaside resorts are perhaps more susceptible to decline, which in turn, has resulted in the occurrence of socio-economic problems that may be associated
with social exclusion. However, despite this contention and the fact that there are theoretical relationships between the causes and consequences of social exclusion and resort decline, there is a dearth of research which examines social exclusion in this context. Again, area-based studies of social exclusion in the UK have been geographically constrained to inland inner-city neighbourhoods and declining rural areas. In fact, academic study of social exclusion in post-mature coastal tourism resorts, whether northern European or Mediterranean, is conspicuously absent and, as a result, it is not clear whether, in what manner and to what extent social exclusion exists and whether there are similarities in its nature and form within these particular environments. In addition, little is known about its cause or causes, or whether and to what extent social exclusion inhibits resort restructuring.

The regeneration response to the effects of decline over the past two decades has been characterised by an approach that focuses on the tourism problems of seaside resorts. The central issue is assumed to be decline in tourist volume and expenditure, tourism-related employment and income, and resorts’ market share. Addressing these concerns has been through market repositioning, which ‘involves the realignment and strengthening of the resort’s image in relation to potential target markets and existing holiday and business markets’ (Agarwal, 2002: 31), and diversification, which involves expanding and varying the existing range of products that are available within the resort (Agarwal, 2002). Even though the implementation of such restructuring strategies may maintain and create new sources of demand, the occurrence, nature, and extent of social exclusion is likely to influence the restructuring process because it affects the resort’s very ambience, essence and atmosphere. Such qualities are, of course, vital to a tourist destination. It follows that identifying, understanding and tackling social exclusion is critically important to the promotion of a positive restructuring process. Thus, having established the study context and discussed the project’s theoretical underpinnings, the remainder of this chapter details the study’s aims and objectives, contributions and thesis structure.
1.3 **Aims, objectives and contributions of the research**

The aim of this study is to investigate the influence of resort decline on social exclusion in English seaside resorts. This aim will be achieved through the following objectives:

1. To develop a national seaside resort database, which given the dearth of available specific seaside resort data, constitutes a significant and valuable resource;

2. To identify the nature and extent of social exclusion in English seaside resorts, drawing, in the first instance, on the Indices of Deprivation;

3. To assess the socio-economic structure and ‘health’ of resorts and, in doing so, investigate whether there are differences in socio-economic performance between deprived and non-deprived resorts and whether place- and population-based variables operate as resort advantages or disadvantages; and,

4. To investigate if there are different types of excluded seaside resort localities, and if so, whether a typology of excluded localities can be established. In other words, to identify, classify and map deprived seaside resort areas.

Thus this study aims to develop understanding of social exclusion in a post-mature mass tourism coastal resort context by investigating characteristics associated with social exclusion in English seaside resorts. The study consists of three elements of research. The first stage focuses on establishing the nature, intensity and extent of social exclusion in all English seaside resorts and involves the construction of a national seaside resort database, drawing, in the first instance, on the Indices of Deprivation. The Indices of Deprivation dataset is ideally suited for the purposes of this analysis, as it covers a range of different and related aspects of deprivation which together are indicative of social exclusion. Since data
does not correspond directly to resorts, district and available lower level super output area
data will be collated for, and matched to, identifiable seaside resorts, and will be subject to
statistical analysis. A combination of univariate and bivariate statistical analyses, undertaken
at several geographic scales, is employed to illuminate the differential incidence of social
exclusion. The first element of the work therefore provides an account of how social
deprivation differs between seaside and non-seaside areas, and how social deprivation varies
within and between seaside resorts in England. Thus, this study makes a theoretical
contribution to knowledge and understanding of the manifestation of social exclusion in
English seaside resorts.

As a second step, in order to provide further insight into the different circumstances
of resorts, a comparative analysis of the national averages of a set of variables selected as
measures of area factors and population composition for seaside resorts is undertaken,
providing both insight into the socio-economic performance of resorts and the differences in
performance between deprived and less deprived resorts. The analysis – based on the
manipulation of major datasets at LSOA and ward level – seeks to establish whether the
variables operate as negative or positive influences and whether they have a large or
significant effect. The second element of the work therefore aids understanding of some of the
causes and consequences of exclusion, but it also enhances comprehension of the way in
which place- and population-based factors might influence social exclusion in English seaside
resorts.

Thus, by focusing explicitly on the consequences of decline through an investigation
of the occurrence, nature and extent of characteristics associated with social exclusion in
English seaside resorts, this study makes a theoretical contribution by enhancing
understanding of post-mature resort development, particularly in relation to the internal
dynamics of resort change. From theoretical and practical perspectives, further insight may be
obtained, and the formulation of remedial policies advanced, by investigating the manifestation
of social exclusion within local areas. In order to facilitate this, the scale of resolution changes
in the third stage of the research and focuses on the intra-resort level where cluster analysis of a set measures of area factors and population composition for excluded resort localities is undertaken to reveal the nature and incidence of localised problem complexes. Cluster analysis is a method for identifying groups whose members are similar to each other, but different to those in other groups. The resulting typologies are not explanations of processes per se, but are ‘an attempt to systemise classification in aid of explanation’ (Marcuse, 1997: 248). They provide a ‘richer understanding of complex phenomena’ (Mikelbank, 2004: 961) and as such provide useful insights into the structural bases of local areas. The third element of the research therefore affords a clear indication of some of the causes and consequences of local area exclusion, and of the variations in need between different groups of excluded resort localities, by using multivariate analytical techniques.

As well as enhancing understanding of the internal dynamics of post-mature resorts, by investigating social exclusion within a post-mature resort context, a number of practical implications for resort restructuring and regeneration policy are revealed. This study also generated three main practical research outputs, these being:

1. The completion of the first comprehensive and detailed comparative study of social exclusion in English seaside resorts through the manipulation and application of an existing dataset, namely the Indices of Deprivation. The results of this study will be of interest to a range of user groups, including voluntary organisation and agencies, local government officers, policy makers and academics. It will be of use in understanding the character and levels of multiple deprivation in seaside resorts and identifying the most and least deprived of the areas analysed.

2. The production of a bespoke place typology of excluded seaside localities, which might lead variously to understand: underlying trends, including how types of resort localities are changing in different ways; and, policy problems, including which kinds of localities need priority intervention, which can survive with reduced intervention in a time of severe
public spending restraint and whether different policy responses are needed in different kinds of localities – and how many varieties are needed. Thus, the typology will have implications for policy development (i.e., allocation, types and levels of policy interventions). However, it will also be of interest to academics, not least because it offers the necessary comparative basis for detailed empirical research on any one local area or collection of local areas.

3. The production of a national seaside resort database, which given the dearth of available specific resort data, constitutes a significant and valuable resource. The database itself has a variety of commercial applications beyond the identification of the factors which are influencing seaside resort performance. It can provide in-depth market intelligence on the demographic, social, and economic composition of English seaside resorts which may inform a variety of planning and development decision-making concerning the populations of such environments themselves, and how best to meet and/or service their needs.

1.4 Structure of the thesis

The thesis is organised as follows. Chapter 2 begins with an overview of the origins and development of social exclusion as a concept. Arguably, this term originated in France of the 1970s, but developed in the 1980s and largely in the policy of the European Union. This focus then leads to an analysis of how the concept has been mobilised and manipulated by the British to explain disadvantage in the UK. Particular interest is paid to the development of the concept in the hands of New Labour. The chapter argues that much of the debate on social exclusion has been characterised by an approach that focuses on individuals and population groups, ignoring those places marginal to the process of capitalist development. As a result, although New Labour implemented a raft of policies to tackle disadvantage, there was a strong emphasis on person-based policies and, in particular, on counting and targeting the poor (as individuals) through the tax and benefit systems. Not surprisingly, given the
overwhelming focus on people rather than place, English seaside resorts remained on the margins of central government regeneration policy. Indeed, these formerly busy tourism destinations were not included in mainstream area-based social exclusion programmes such as the National Strategy for Neighbourhood Renewal and the Housing Market Renewal Programme. Thus, with respect to the social exclusion agenda, the problems and challenges facing seaside residents are notable by their absence.

In chapter 3, the social and community issues facing English seaside resorts are examined. Partly by way of a backdrop to the main body of the review, the chapter opens with a short resume of the development of coastal resorts in Britain and reviews three key approaches to studying resort development. It argues that little attention has been paid to the non-touristic dimensions of resorts and goes on to examine conceptual issues important to an understanding of resort socio-economic change. The issues identified include the concept and definition of resort itself, different perspectives on resort change, measuring resort change and causes and effects of resort change. With these issues in mind, the final section of the chapter summarises the existing evidence and considers the role of socio-economic resort change in local area exclusion. The principal factors identified through a review of the literature as being potentially important for social exclusion in seaside resorts may be categorised according to whether they relate directly to the environment in which people live (i.e., place-oriented factors) or the characteristics of the seaside residents (i.e., people-oriented factors). Thus the chapter presents a framework for understanding resort change and social exclusion. This framework provides a basis for subsequent analysis, undertaken in the methodology, to determine how relevant variables are represented by the available data.

Chapter 4 clarifies the research objectives and sets out how the research was developed, both in relation to the process and the materials developed to provide the results. Chapter 5 then provides a descriptive analysis of the nature, intensity and extent of social exclusion in seaside resorts. Attention turns in Chapter 6 to the role that place- and population-based factors play in contributing to the presence of characteristics associated with
social exclusion. Presentation of the results obtained from a comparative analysis of mean values for variables selected as indicators of area factors and population composition in the seaside resorts of England split between the deprived and non-deprived resorts is followed by a statistical analysis of the composition and characteristics of each cluster of excluded resort locality. Finally, chapter 7 discusses how the findings established in Chapters 5 and 6 contribute to knowledge and understanding of social exclusion, and of its relationship with resort change. In addition, several policy-related implications are discussed and consideration is given to areas for further research.

1.5 Summary

This chapter has introduced the concepts of poverty, deprivation and social exclusion, considered the definition, scope and nature of each and explored the links between them. Social exclusion is a much broader concept than poverty and deprivation, and social exclusion may not be poverty- and/or deprivation-based. Its growth and regular appearance in both academic and policy debates since the late 1980s has occurred in response to the realisation of the need to re-evaluate what constitutes and causes disadvantage in advanced capitalist societies. However, despite over twenty years of use within the European Union, there is no universally accepted definition either theoretically or operationally. Thus, debate has centred on how it should be defined, the nature of the links which exist between different elements which may constitute the phenomenon, how it might be measured, its causes and the role that different factors play in creating, reducing and sustaining geographical concentrations of social exclusion, and how policy might best tackle the problems which emerge.

Treatment of social exclusion in the UK may be criticised as academic research and policy attention of social exclusion has focussed on discrete social issues, specific sectors of society and particular areas, such as depressed inland urban neighbourhoods and some declining rural environments, and has neglected coastal communities and seaside resorts. This neglect has occurred despite the fact that i) the dominant perspective on the recent history of
English seaside resorts has been to treat them as places in decline and ii) there is increasing evidence of the presence of characteristics associated with social exclusion within some English seaside resorts. In light of these shortcomings, this research will investigate the influence of resort decline on social exclusion in English seaside resorts. In order to achieve such an aim, a number of specific objectives will guide the work and these were detailed in the objectives section of this chapter. The project draws upon existing area studies of social exclusion and post-mature resort development and seeks to make a theoretical contribution to both these fields, with practical value. Academically, this study makes a theoretical contribution to knowledge and understanding of the manifestation of social exclusion in English seaside resorts, and of its relationship with resort change. Practically, by investigating manifestations of social exclusion within a post-mature resort context, significant policy implications are likely to emerge from the study’s findings which will inform the design of more appropriate approaches to tackling social exclusion in English seaside resorts and elsewhere.
Chapter Two

Social Exclusion: Origins, Development and Policy

Chapter One was concerned with the context of the study which argues that many English seaside resorts are facing a combination of economic and social pressures which represent the culmination of many years of decline. The visibility of problems in English seaside resorts has undoubtedly been obscured by successive governments focus on urban and rural categories. Yet seaside resorts are likely to be more vulnerable to economic change and its social and spatial consequences than inland inner-city and rural areas, as seaside resorts have a significantly different geography, urban morphology and economic ecology. However, despite this contention and evidence of characteristics associated with social exclusion in some English seaside resorts, these coastal environments are an under-researched entity in geographical studies of poverty, deprivation and social exclusion. The lack of research of social exclusion in English seaside resorts may also be because ‘the recognition and acceptance of social exclusion as a problem and a concept is a fairly recent phenomenon’ (Agarwal and Brunt, 2006: 657).

This chapter therefore investigates the conditions in which the concept of social exclusion arose and how the concept has been mobilised and manipulated by the European Union and the British. Particular attention is paid to the development of the concept under New Labour, which heralded social exclusion as a substantial ‘policy departure’ from previous policy focus on ‘poverty’ (Miliband, 2005). Before drawing conclusions on the potential impact of New Labour’s social exclusion agenda, however, there is a review of the earlier influences upon, and development of, New Labour’s economic and social ideology. The Labour Party underwent deliberate political reinvention in the 1990s and embraced third way politics, which prioritised equality of opportunity over equality of outcome. It will be argued that individually-centred policies mark out New Labour’s approach as a weak form of social exclusion, rather than strong form, which provides a possible explanation why there was a stalling of social exclusion outcomes. By reviewing the policy responses to social exclusion, the chapter clearly demonstrates that English seaside resorts remained on the margins of central government regeneration policy.
2.1 Tracing the beginnings of the concept

It is generally accepted that the term social exclusion originated in France in the mid-1970s. Initially, French socialist politicians used social exclusion to refer to the ten per cent of French citizens who were unable to access government services because of particular forms of vulnerability and discrimination, not all of which were because of income poverty. The people identified as living on the "margins of society" were the ‘mentally and physically handicapped, suicidal people, aged invalids, abused children, substance abusers, delinquents, single parents, multi-problem households, asocial persons and other social "misfits"’ (Silver, 1994: 532). In the 1980s, however, the term was used to refer to various types of social disadvantage related to social problems arising from economic crises and crises of the welfare state. Social exclusion in this context referred not only to the rise in long-term and recurrent unemployment, but also to ‘the growing instability of social bonds: family instability, single member households, social isolation, and the decline of class solidarity based on unions, the labour market, and the working class neighbourhood and social networks’ (Silver, 1994: 533). It later extended to incorporate those suffering multiple deprivation in worst affected areas (i.e., spatial concentrations of disadvantage) (Silver 1994). Exclusion was seen as the progressive rupture of social bonds – economic, institutional and meaningful – between individuals and society (Silver, 1994). Furthermore, social exclusion was viewed as a ‘failure of the Republican state in protecting the cohesion of society’ (Bhalla and Lapeyre, 1997: 414). Social policy was directed towards ‘insertion’ or ‘integration’ of the excluded to ensure social cohesion or social solidarity (Silver, 1994: 535).

The eighties proved crucial to the conceptualisation of the term. Beginning in the seventies industrialised countries underwent ‘a deep structuring of their socio-economic systems’ with their embrace of neo-liberalism/neo-conservatism (Bhalla and Lapeyre, 2004: 3). The neoliberal consensus arose as a reaction to the economic crises of the 1970s and prescribed industrial restructuring, the opening up of labour markets, moves to reduce workers protection and the retreat of state provided welfare to pump up economic growth
The new economic policy generated the ‘globalisation of capital and the restructuring of the labour market’ (Bhalla and Lapeyre, 2004: 3) causing disruptions to the equilibrium of society. There was ‘a drastic ideological shift towards the supremacy of self-adjusting free-market mechanisms aimed at dissolving or circumventing most of the institutional forms inherited from the compromises of the Fordist growth regime’ (Bhalla and Lapeyre, 2004: 3). It has been argued that these deep socio-economic transformations have caused a shift from a Fordist era to a post-Fordist era. Fordism was not only about a mode of industrial organisation. It denoted a specific configuration of society. There was ‘a certain degree of social integration’ (Munck, 2004: 31). ‘Fordist employment and compensation norms included internal labour markets and a family-supporting wage in exchange for a commitment of lifetime loyalty to a firm’ (Vidal, 2012: 551). A secure job for a worker meant better participation in society in terms of social networks (Munck, 2004). In essence, Fordism implied stability and predictability (employment, family, community, welfare, lifestyle, leisure, consumption etc.) in society. Although there were economic problems (see Vidal, 2012: 556-558), the Fordist era of state-mediated capitalism was, for the most part, characterised by ‘rising real living standards and a considerable degree of upward social mobility through expanding educational and occupational opportunities’ (Quark, 2008: 7).

All that would change in the 1980s and, in an accelerated manner, in the 1990s as neoliberal globalisation impacted on society. Where once there was stability of employment now the buzzword is flexibility. ‘Under current restructuring, labour flexibility is privileged in the competitive, globalised market’ (Quark, 2008: 6). Labour flexibility meant ‘precarious forms of employment and insecurity of employment… the loss of a stable link to the world of work was loss of access to social, political and cultural resources and the ability to sustain stable family life’ (Munck, 2004: 32). That is why in the eighties social exclusion was not referring to various categories of people unprotected by social insurance. Rather, French socialist politicians talked of the ‘social exclusion of industrial workers who lost not only their jobs, but also their way of life, as well as experiencing a breakdown of traditional workplace ‘solidarity’ when the economy made its post-industrial switch from manufacturing
to service industries’ (Page, 2000: 5). Mass vulnerability was not confined to France. Many areas throughout the developed world have been adversely affected by the processes of global economic restructuring. Parkinson (1998: 1) describes these processes in the following terms:

‘Rapid changes in the economic environment caused by internationalisation and industrial and corporate restructuring have transformed the character of local economies. They have brought a more fragmented labour market, a decline in manufacturing and a rise in the service sector, high levels of structural unemployment, an increase in part time, insecure and low paid employment, a shift in the balance of male and female employment and a growing gap between the highest and lowest household incomes. These changes are not only found in areas where the economy is in decline or during periods of recession. They are also a feature of booming economies’.

The implementation of the neo-liberal strategy of development has resulted in drastic socioeconomic implications for large sectors of national populations:

‘People in many countries have experienced rates of unemployment above historical rates; a lack of job security, salary reductions and a loss of benefits as a result of the process of restructuration and rationalisation of private and public corporations; and a more restricted access to basic services such as health and education as a result of new fiscal policies. They have also experienced the negative consequences of high rates of inflation; a more unequal distribution of income; and, in some cases, the deterioration of institutional forms of resistance, such as labour organisations’ (Diaz et al., 2001: 2).

The post-Fordist era is depicted as ‘creating increasing income inequality and a closure of mobility chances, generated as a result of three broad neoliberal tendencies, specifically: a shift in the share of incomes from labour to capital; a cut in cash welfare transfers to households; and increasing disparities in earned incomes’ (Quark, 2008: 7). The above mentioned changes are felt acutely at the level of individuals and households as they result in unequal access to resources and life chances. Noting the growing social divide of this era and intensifying inequality on a number of axes, Madanipour (1998: 78) insists ‘there are ever larger numbers in transition from inclusion to exclusion’.

It is crucial to make explicit a number of key points from the above discussion. Unlike definitions of poverty or deprivation, social exclusion is seen in a wider context. In particular
it is seen in the context of globalisation and the structural changes brought about by neoliberal globalisation. It is a consequence of the alleged Fordist–post-Fordist shift and is related to ‘the deep economic restructuring necessitated by growing competition in the emerging global economy’ (Bhalla and Lapeyre, 1997: 415). Hence, the notion of ‘social exclusion relates to socio-economic structural changes rather than to individual’s behaviour or characteristics’ (Bhalla and Lapeyre, 2004: 4). However, although social exclusion can be seen as ‘a consequence of global phenomena, it is nevertheless affected by the national context, notably the particularities of national economic policies, welfare regimes and rights of citizenship’ (Percy-Smith, 2000: 5). For example, the French Government made policies that disqualified certain groups from receiving social insurance on the basis of specific criteria. ‘If you wanted to be included amongst those who had access to social insurance you found a job, or you got married to someone who had a job’ (Peace, 2001: 20). These national and global forces have different implications for different areas and different social groups. Thus, the concept of social exclusion draws attention to the underlying processes of change at work on, and in, society.

2.2 Social exclusion in the European Union

Since the late 1980s, the European Commission has promoted the notion of social exclusion rather than poverty within its political debates and social research programmes. The shift of the Commission to ‘exclusion issues’ is mainly attributed to the Jacques Delors presidency (from 1985 to the early 1990s) and was ‘born in the context of the French policy discourse’ (Ferrara et al., 2002: 228). Initial references to social exclusion may be traced back to 1989. The Community Charter of Fundamental Social Rights for Workers (the Social Charter, as it is known) was the first major EU policy document to refer to social exclusion – the Social Charter incorporated the term in its preamble. However, within a few months the concept had made a substantial entry into EU thinking. The Resolution of the Council of Ministers for Social Affairs on Combating Social Exclusion was its birth certificate. In this document, social exclusion was coined as an outcome and process that involves multiple
dimensions but is grounded in structural changes, with (reduced) access to the labour market as particularly decisive (Council, 1989). The Council Resolution emphasised that ‘combating social exclusion may be regarded as an important part of the social dimension of the internal market’ and urged ‘the need for economic development policies to be accompanied by integration policies of a specific, systematic and coherent nature’ (Council, 1989: 1). Combating social exclusion has from then on become one of the important concerns for European social policy that however was still in its infancy and needed to be developed.

Room (1995c) has traced the development of the concept from EU anti-poverty programmes. From the first two (1975-80 and 1986-89) to the third (1990-94), the naming of the social problem of interest shifted from ‘poverty’ to ‘exclusion’:

“"Poverty" was at the heart of the Council decisions that launched the first and second programmes… The third programme, in contrast, was concerned with the "integration" of the "least privileged"… By the time the programme was actually launched, social exclusion became the fashionable terminology. It was debatable how far these shifts reflect any more than the hostility of some governments to the language of poverty, and the enthusiasm of others to use the language of social exclusion’ (Room, 1995c: 3. Emphasis added).

Part of the rise in popularity of the social exclusion concept has been attributed to its political appeal. It has been argued that it is perceived as less charitable (Silver, 1994), less blatant (Peace, 2001) and less accusing/threatening than poverty and deprivation (Berghman, 1995). In addition, its semantic flexibility allows it to be acceptable to a range of political positions. Right-wing governments, including UK Conservatives and Christian Democrats in Germany, did not recognise the existence of poverty in their own countries pointing out that as welfare states they guarantee a minimum income, while commentators on the left were becoming increasingly concerned with the growing social divide associated with the increasing income inequality (Silver and Miller, 2003). "Social exclusion” was sufficiently broad to accommodate both these political perspectives, and – crucially – allowed debates about social policy to continue at EU level. Indeed, many writers refer to the difficulties (from 1989 to the mid-1990s) the EU had in getting agreement for taking action on poverty to be included in the
Treaty of Amsterdam. The difficulties relate to the before-mentioned connotations of poverty, the fact that ‘member states adhered to different definitions of poverty and consequently some denied that poverty was a problem within their borders’ (Marsh and Mullins, 1998: 751), ‘the principle of "subsidiarity" that assigned social protection responsibilities to the member states, as well as to British refusal to ratify that section of the 1992 Maastricht Treaty’ (Silver and Miller, 2003: 5). As a term, ‘social exclusion appeared to offer a less emotive, perhaps less understood and therefore less politically contentious alternative concept to poverty’ (Atkinson and Davoudi, 2000: 436). Put differently, social exclusion provided a way for ‘member states to commit themselves to an imprecise, but nonetheless worthy-sounding mission’ (Marsh and Mullins, 1998: 751).

The third (and final) anti-poverty programme (Poverty 3, as it is known) financed and established the European Observatory on National Policies for Combating Social Exclusion (1991-94). The Observatory has linked the notion of social exclusion to ‘the social rights of citizenship... to a basic standard of living and to participation in the major social and occupational opportunities of the society’ (in Room, 1993: 14). The principal focus of the Observatory’s work has been on the effectiveness of different national policies. It had to conceptualise social exclusion, discuss its measurement and suggest indicators for monitoring the effectiveness of policies for combating social exclusion (Room, 1995a). The Observatory’s researchers suggest that social exclusion should be conceptualised in terms of the breakdown of one or more of four societal institutions which support the basic rights of citizenship of European residents:

‘the democratic and legal system, which promotes civic integration; the labour market which promotes economic integration; the welfare system promoting what may be called social integration; and, the family and community system which promotes interpersonal integration’ (Berghman, 1995: 19).

According to the lead researcher (Room, 1995a), social exclusion could be analysed in terms of the denial or non-realisation of social rights and in circumstances where citizens are
unable to secure their social rights, they will tend to suffer processes of generalised and persistent disadvantage and their social and occupational participation will be undermined. Room (1995a) argued that such rights were implied in European policy statements rather than enshrined in legislation. The Observatory produced four annual reports which were accompanied by a number of thematic reports (all of these based on national reports). The Observatory, which reported back to the Council of Ministers, identified several key areas of policy on social exclusion – including access to social services (with welfare, housing, health, education and justice, expressly mentioned), measures to prevent exclusion (with access to technology, the prevention of life crises and the promotion of family solidarity specifically mentioned) and measures to help vulnerable groups (especially those with disabilities, those at risk of poverty and children with special needs). However, the Council of Ministers considered employment to be the most important. Social exclusion was roundly understood to be closely associated with the labour market process, particularly the long term, high levels of unemployment of the 1980s and early 1990s (European Commission, 1994; Room, 1995a). Indeed, the White Paper on European social policy - the way forward for the Union (European Commission, 1994) contained only one chapter on social policy. It focused on labour-market measures and identified reducing unemployment and promoting reinsertion into work as the single most important factor in combating social exclusion. Thus, after 1994, issues such as employability (skills, flexibility, adaptability, marketability) and job creation dominated the social agenda. The situation is neatly summarised by Daly (2006: 6):

‘For at least five years [1989-94], a concern with a more solidaristic social policy – which was a genuine thrust of the period and a hallmark of the Delors presidency – came to be replaced by the exigency of modernising social policy, as internal political problems (including opposition to Delors’ Commission) and external problems associated with the relatively poor performance of the EU in the face of an increasingly globalised economy turned the collective mind away from a social policy for the sake of the social and towards the economic’.

The fight against "social exclusion" has primarily been undertaken with the European Social Fund (part of the European Structural Funds), which has spent in excess of €60 billion on labour market initiatives in the period 1995-99 (European Commission, 1999). However,
such initiatives fail to address the social exclusion of people who are not in the labour market (e.g., the young, the old, the disabled, care providers etc.). Another criticism is that the employment programmes are linked to the EU objective of achieving economic cohesion, meaning the potential beneficiaries are people in those regions within the EU that are worst off. Consequently, people who live in hardship in better off regions are not eligible for assistance from employment programmes. It is also questionable whether European governments should pool their budgets and concentrate their efforts on employment. Not only are they subsidising industry by shifting responsibility for job training from the private to public purse, governments also are diverting monies that might otherwise be spent on welfare, social programmes and public services.

Thus, the EU’s actions have focused primarily on combating unemployment. Wider aspects of social exclusion have received comparatively little attention. It is necessary to emphasise that the principle of subsidiarity restricts the EU in the field of social policy, especially where member states are unable to agree a single definition and what the appropriate responses should be (Daly, 2006). Indeed, there are significant differences in the way social exclusion has been interpreted across Europe. The three-fold typology of paradigms for social exclusion developed by Silver (1994) has made a valuable contribution to understanding the ideological and political roots of these differences and highlighting the implications for policy/action to address social exclusion. Referring to the three paradigms of solidarity, specialisation and monopoly, Silver (1994: 539) notes:

‘Each paradigm attributes exclusion to a different cause and is grounded in a different political philosophy; republicanism, liberalism and social democracy. Each provides an explanation of multiple forms of social disadvantage – economic, social, political and cultural – and thus encompasses theories of citizenship and racial-ethnic inequality as well as poverty and long-term unemployment’.

The key characteristics of each paradigm are summarised in Table 2.1 and below:
1. The ‘solidarity’ paradigm is rooted in French Republican political ideology and attributes exclusion to the breakdown of social solidarity, that is, the social bond between the individual and society. The solidarity paradigm, which is heavily informed by Durkheim’s sociology, views society ‘as something external, moral and normative rather than grounded in individual, group or class interests’ (Silver, 1994: 541). Solidarity or social order arises out of shared values and rights. From this perspective, social exclusion is regarded as a break in the social fabric, of the bond between the individual and society, along with an erosion of widely accepted values and rules about the appropriate ways to behave within society. ‘Like deviance or anomie, exclusion both threatens and reinforces social cohesion’ (Silver: 1994: 542). In this model, the state and public institutions have an important role to play in promoting social integration for those that are excluded, specifically, by inserting groups (e.g., the poor, the unemployed, disaffected youth, ethnic minorities) back into the mainstream society and dominant culture. Even though individuals have political rights, they also have duties and obligations to maintain national solidarity. This model underpins the Republican State.

2. The ‘specialisation paradigm’ is embedded in Anglo-American liberalism. Here the basis of the social contract is considered to be in social differentiation. Individuals engage in voluntary economic and social exchanges based on their interests and motivations. Social exclusion occurs when barriers such as discrimination, market failures and unenforced rights prevent individuals from freely engaging in these exchanges (Silver, 1994). The specialisation paradigm stresses the pathological and micro-sociological causes of economic exclusion; however, social liberals are also cognisant of the effects of structural change. According to Silver (1994: 560), ‘the split between supply-side and demand-side theories parallels the division between classical and social liberalism… In contrast to supply-side theoreticians who attribute poverty or unemployment to individual failings, most sociologists now accept that the new poverty and long-term unemployment have demand-side or structural causes’.
Unlike the solidarity model, minimal public intervention is seen as the way to prevent exclusion. Government support in terms of welfare payments, for instance, is depicted as creating dependency rather than promoting a work ethic, leading to the development of a cultural underclass (Silver 1994). Although this paradigm is dominant in the United States of America, it can be broadly equated with the ideology of the New Right in Europe including Britain during the 1980s and 1990s (and more recently too). ‘The traditional solution to poverty and unemployment is to create jobs and raise productivity by lowering wages and eliminating rigid employment regulations’ (Silver, 1994: 555).

3. The ‘monopoly’ paradigm, influential on the European Left, views exclusion as the result of the formation of group monopolies. Non-members of the dominant groups are restricted access to resources, goods and services. ‘Drawing heavily on Weber, and, to a lesser extent, Marx, it views the social order as coercive, imposed through a set of hierarchical power relations. In this social democratic or conflict theory, exclusion arises from the interplay of class, status and political power and serves the political interests of the included… Exclusion is combated through citizenship, and the extension of equal membership and full participation in the community to outsiders’ (Silver 1994: 543). This model underpins the existing Western European structure of society and is influential in many North European countries and, to a certain extent, Britain. The social democratic State holds the balance of power and attempts to compensate through social protection.
Table 2.1: Three paradigms of exclusion

<table>
<thead>
<tr>
<th></th>
<th>Solidarity</th>
<th>Specialisation</th>
<th>Monopoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideology</td>
<td>Republicanism</td>
<td>Liberalism</td>
<td>Social Democracy</td>
</tr>
<tr>
<td>Discourse</td>
<td>Exclusion</td>
<td>Discrimination, Underclass</td>
<td>New poverty, Inequality</td>
</tr>
<tr>
<td>Cause of Exclusion</td>
<td>Erosion of collective values, Break in bond between individual and society</td>
<td>Barriers to voluntary exchanges</td>
<td>Different hierarchical class access to resources</td>
</tr>
<tr>
<td>Solutions</td>
<td>Individual rights and obligations to solidarity (cultural and moral), Public institutions important</td>
<td>Rights and obligations in contractual sense, Limited public intervention</td>
<td>Extend equal citizenship rights, Social protection</td>
</tr>
</tbody>
</table>

Source: Modified from Silver (1994: 540)

It is crucial to make explicit a number of key points from the above discussion on the emergence and development of social exclusion in the EU. First, the concept of social exclusion was adopted for *both* conceptual and political reasons. Second, the term "social exclusion" has been linked to the EU objective of achieving economic and social cohesion. Third, although the language used by the European Commission/European Observatory in its discussions of social exclusion resonate with the Republican language of the solidarity paradigm (i.e., internal solidarity, shared values and rights, social integration) and the social democratic language of the monopoly paradigm (i.e., the concept of citizenship, social rights orientation), the policies proposed suggest that the Anglo-American neoliberal tones of the specialisation paradigm have been a greater source of influence. As discussed in the previous section, ‘while the causes of social exclusion may be structural, its effects can be ameliorated or exacerbated by the attitudes, activities and policies of governmental bodies’ (Percy-Smith, 2000: 6). For example, EU policies on labour market flexibility and reduced social protection are incompatible with promoting secure employment and, together with public spending cuts required to meet conditions for monetary union (i.e., economic cohesion), may actually increase the risk of poverty and social exclusion (Percy-Smith, 2000; Room, 1995a). The final point is that the European approach to social exclusion has, in practice, reflected a more limited concern with labour market exclusion. Indeed, even though the EU now (owing to the Amsterdam Treaty which was signed in 1997 and entered into force in 1999) has a clear legal
basis for work on social exclusion that goes beyond the labour market, ‘the EU’s social policy portfolio mainly consists of components of employment/active labour market policy, industrial safety, promoting workers’ rights, social dialogue, enabling labour mobility and gender equality’ (Daly, 2006: 5).

2.3 Social Exclusion in the United Kingdom

Social exclusion made its first appearance on the UK stage in the late nineties. During Conservative rule (i.e., 1979-97) the notion did not enter policy debates. ‘The concept of solidarity and social integration which underlies the notion of "social exclusion" in the French tradition is difficult to grasp for people working within a liberal individualistic tradition’ (Gore, 1995: 2). Indeed, when the exclusion approach was given first consideration in the 1980s by a Conservative administration dismissive of the suggestion that income poverty was a significant problem, the emphasis shifted from social cohesion to individualism (Hills et al., 2002). The New Right linked concerns about increased levels of unemployment, crime and family breakdown to the idea of an "underclass". This idea, which was imported from America and characterised by the work of Murray (1984, 1990), locates the causes of societal disadvantage within individuals themselves and draws together three explanations – dependency theory, the culture of poverty thesis and the cycle of deprivation. Indeed, Murray directly related poverty to the behaviour (i.e., parenting-, criminal- and labour market-behaviour) and decisions (e.g., on family relationships, marriage and child-bearing) of individual poor people and, furthermore, argued that poverty was transmitted culturally through an intergenerational cycle of deprivation. In short, poverty was viewed as the result of personal choices and therefore a matter of individual responsibility. According to Murray, it was the underclass culture itself that was holding people back, not structural inequality. Consequently, Murray’s policy prescription was to limit the extent of government intervention so that poor people’s behaviour and decisions were more constrained by economic reality – the idea being that the resultant circumstances/hardship would change individual attitudes and behaviours and thus reduce the size of the underclass. These were the
arguments behind the Conservative government’s coercive policies including greater welfare restrictions (i.e., through greater emphasis on means-testing and through tighter definitions of need and of entitlement and stricter conditions) and increased deterrence through law enforcement and imprisonment (Lister, 1997; McAnulla, 2006). Thus, the Conservatives used the stick rather than the carrot and drastically reduced levels of social protection.

While the idea of a socially and morally inferior underclass is preferred by conservative thinkers and politicians (possibly because it blames the poor and diverts attention away from blaming the mechanisms through which resources and wealth are distributed), as other reviews on the issue indicate, the ‘dependency culture’ is not supported by research evidence (Walker, 1990). There is, however, clear evidence of social polarisation in the 1980s. Indeed, in-equality of wealth between the rich and the poor has been growing. During the 1980s, incomes substantially diverged and, in the 1990s, the income gap widened; for example, in 1983, 14% of households in the UK lacked three or more basic necessities because they could not afford them, a proportion which increased to 21% in 1990 and to over 24% by 1999 (Joseph Rowntree Foundation, 2000). Figure 2.1 shows income inequality in the UK as measured by the Gini coefficient, which measures inequality across the whole of society. Simply put, if all the income went to only one person (maximum inequality) and everybody else in society received nothing, the Gini coefficient would be equal to 1. If income was distributed equally, and everyone had exactly the same amount, the Gini would equal 0.
As can be seen, inequality increased rapidly during Conservative rule, with the Gini coefficient rising from 0.25 in 1979 to 0.34 in 1991. ‘This was the largest increase in income inequality seen in British history and was larger than the rise that took place in other countries at the same time’ (Institute for Fiscal Studies, 2012: 2). Thus, inequality widened enormously during the 1980s and 1990s. One of the results of the growing divide between the rich and poor has been the growing marginalisation of particular social groups (e.g., the long-term unemployed, homeless, lone parents, ex-offenders, disabled and long-term sick, ethnic minorities) and the concentration of the poor in marginalised areas, ‘particularly the large cities in northern Britain and inner London, but also former coalfield areas and some seaside towns’ (North and Syrett, 2006: 72). British interest in social exclusion reflects the growing of socio-spatial inequalities over the 1980s and 1990s. Reversing this decline became one of the central challenges for the Labour party, which saw its best opportunity to win power in almost two decades.
2.3.1 New Labour – new exclusion?

The decision by the Labour Party to adopt a focus upon tackling social exclusion was not only due to the high levels of inequality in the UK in the mid-1990s. The problem of social exclusion formed part of the development of a new political language to ensure electoral success (Levitas, 1998). Indeed, the term social exclusion was adopted by the Labour Party from the EU as it underwent a process of deliberate reinvention from "Old" to "New" Labour. So what factors led to social exclusion forming a key focus for such a transition? The Labour Party sought to define itself in opposition to the excesses of Thatcherism and was influenced by the report of the Commission on Social Justice (1994) and the Third Way thinking of Giddens (1994).

With respect to Thatcherism, as indicated earlier, during Conservative rule the welfare state underwent significant change. The Conservatives were adamant on ‘rolling back the state, promoting choice and consumerism, encouraging the mixed economy of welfare and reducing welfare dependency’ (Powell, 1999: 4). Committed to New Right ideology, the Thatcher government believed that the state was too big and too involved and that ‘it should do less by shifting responsibility for welfare back onto private individuals and families’ (Driver and Martell, 1998: 84). Thatcher argued that ‘spiralling welfare expenditure is both unsustainable and limits the competitiveness of the domestic economy in global markets’ (O’Brien, 2002: 404). Consequently, ‘the Conservatives cut benefits and put pressure on claimants to take up job opportunities that came along’ (McAnulla, 2006: 128). In response to the Conservative approach, ‘the defence of the welfare state and the promise of extra funding for social benefits and services were the centre pieces of the 1983 and 1987 Labour election manifests’ (Driver and Martell, 1998: 85). Likewise in 1992, the Labour party manifesto pledged ‘to restore the value of child benefit, raise the basic pension and reintroduce the link between pensions and earning that the Conservatives had abandoned in 1981’ (Purdy, 2000: 183). The Conservatives turned that into ‘Labour’s tax bombshell’ and reminded the electorate of past failures, including ‘the winter of discontent, the IMF crisis, ‘lame duck’
nationalised industries and punitive direct taxation’ (Larkin, 2001: 51). Labour found itself losing the election.

The Labour Party’s response was to set up the Commission on Social Justice (CSJ). It was to carry out an independent inquiry into social and economic reform and produce recommendations for a strategy and programme of policy changes. The introduction to the report of the CSJ set out the values of social justice as ‘the equal worth of all citizens, their equal right to be able to meet their basic needs, the need to spread opportunities and life chances as widely as possible, and finally, the requirement that we reduce and where possible eliminate unjustified inequalities’ (CSJ, 1994: 1). The report cited extensive evidence of increasing inequality and acknowledged the forces of globalisation, deindustrialisation and technological change, as well as demographic changes, particularly the changed role of women in society. The CSJ argued that ‘inequality is very inefficient’ (1994: 23) and that ‘squalor and crime carry enormous economic as well as social costs’ (1994: 20).

The report referred to the ‘unwelcome’ process of social exclusion (1994: 81-82). The report discussed exclusion from work, transport, politics, education, housing, and leisure facilities as increasingly obvious features of British society. Accumulated disadvantages of unemployment, bad housing, poor schooling and high crime were understood to combine to produce areas where there was simply ‘no economy’. The CSJ remained unconvinced by descriptions of the underclass, but recognised that the dismantling of the welfare state brought with it consequences, including ‘increasing alienation and disaffection among many people’ (1994: 82). Social viability would depend upon building a society based on ‘inclusion’ in terms of an end to structural unemployment, a sustained attack on the accumulated disadvantages of deprived parts of the UK and effective support for families of all kinds (CSJ, 1994).

The economic analysis of the CSJ argued that inequality held back economic growth through costs to government and deterring investors from whole areas which were seen as
disadvantaged. In contrast, social justice and investment in people could contribute to economic growth. The report recognised that markets were not created by natural forces, but were the product of the values, institutions and political decisions that governed them, calling for 'intelligent regulation' to make markets work better for society (1994: 98). The CSJ viewed paid employment as crucial to a secure and stable life. Among the specific recommendations (i.e., intelligent regulation necessary to create a more inclusionary labour market) made by the CSJ were: policies to prevent discrimination of part-time workers; effective equal pay; anti-discrimination and anti-harassment legislation; a statutory minimum wage; and, family-friendly employment policies. The latter include: improvements in maternity leave; the introduction of parental leave and leave for family reasons; carers leave; and flexible working hours that meet employees’ needs and not just employers’ needs (1994: 155-157). The CSJ stressed that certain groups such as the young unemployed, long-term unemployed and lone parent families would require practical support (i.e., education, skills and training, child-care), as well as income support to secure insertion in society. This welfare-to-work initiative would sit comfortably with many of the EU ideas on social integration through labour market policies.

The CSJ argued for a future which combined the dynamics of a market economy with strong social institutions, families and communities. Labour modernisers had their sights fixed on 'third way politics'. The Third Way has been presented by the sociologist Giddens as a new approach to politics and policies which transcends the old categories of Left (i.e., top-down socialism) and Right (i.e., traditional neo-liberalism). Table 2.2 presents a summarised account of the Third Way. The idea was to reshape the way in which the state addressed inequality. Giddens (2000: 85-86) argued ‘there is no future for egalitarianism at all costs’ and that instead ‘emphasis should be placed upon equality of opportunity’. The distinction between equality of outcome and equality of opportunity is crucial here. While equality of outcome demands reducing the privileges of the rich in favour of the poor through the tax and benefit systems (favoured by "Old" Labour), equality of opportunity does not. Equality of opportunity (although traditionally a more liberal stance) is more in keeping with the drive
towards social cohesion and inclusion (providing opportunities for people to enter the labour market, making everyone equally employable, addressing socio-spatial disadvantage) sought by the CSJ (and subsequently New Labour).

In the run up to the 1997 election, the New Labour manifesto promised to create equality of opportunity, not simply by redistribution through the tax and benefits system, but by reforming government, improving public services and targeting support for the most disadvantaged (Labour Party, 1997). Priority areas would be education and health, with specific pledges on reducing class sizes and hospital waiting lists. The welfare-to-work initiative (the New Deal, as it is known), comprising both the duty to seek work and proactive government programmes to support entry/re-entry into a flexible market, would also receive a high priority. By reducing claimant numbers, New Labour intended to release funds for investment in education and health. The New Deal, funded through a windfall tax on privatised utilities, would be linked to a comprehensive reform of welfare provision. In implementing a welfare programme, there would be no increase in the basic or top rates of income tax and a New Labour government would seek to manage the economy so as to maintain stable economic growth and low inflation. Welfare spending would be funded through the benefits of steady economic growth (Labour Party, 1997). This manifesto, together with the language and broad policy goals and means associated with the Third Way agenda (see Table 2.2), was meant to appeal both to Labour’s traditional working-class base and to the middle income, middle Britain voters New Labour was courting.
Table 2.2: Dimensions of the Third Way in social policy

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Old Left - social democracy</th>
<th>Third Way</th>
<th>New Right - neo-liberal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discourse</td>
<td>Rights</td>
<td>Rights and responsibilities</td>
<td>Responsibilities</td>
</tr>
<tr>
<td></td>
<td>Equity</td>
<td>Equity and efficiency</td>
<td>Efficiency</td>
</tr>
<tr>
<td></td>
<td>Market failure</td>
<td>Market and state failure</td>
<td>State failure</td>
</tr>
<tr>
<td>Values</td>
<td>Equality of outcome</td>
<td>Inclusion</td>
<td>Equality of opportunity</td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td>Positive welfare</td>
<td>Insecurity</td>
</tr>
<tr>
<td>Policy goals</td>
<td>Equality of outcome</td>
<td>Minimum opportunities</td>
<td>Equality of opportunity</td>
</tr>
<tr>
<td></td>
<td>Full employment</td>
<td>Employability</td>
<td>Low inflation</td>
</tr>
<tr>
<td>Policy means</td>
<td>Rights</td>
<td>Conditionality</td>
<td>Responsibilities</td>
</tr>
<tr>
<td></td>
<td>State</td>
<td>Civil society/market</td>
<td>Market/civil society</td>
</tr>
<tr>
<td></td>
<td>State finance and delivery</td>
<td>State/private finance and delivery</td>
<td>Private/state finance</td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td>Flexicurity</td>
<td>Insecurity</td>
</tr>
<tr>
<td></td>
<td>Hierarchy</td>
<td>Network</td>
<td>Market</td>
</tr>
<tr>
<td></td>
<td>High tax and spend</td>
<td>Pragmatic tax to invest</td>
<td>Low tax and spend</td>
</tr>
<tr>
<td></td>
<td>High services and benefits</td>
<td>High services and low benefits</td>
<td>Low services and benefits</td>
</tr>
<tr>
<td></td>
<td>High economic redistribution</td>
<td>High asset redistribution</td>
<td>Low economic redistribution</td>
</tr>
<tr>
<td></td>
<td>Universalism</td>
<td>Mix of universalism and selectivity</td>
<td>Selectivity</td>
</tr>
<tr>
<td></td>
<td>High wages</td>
<td>National minimum wage</td>
<td>Low wages</td>
</tr>
</tbody>
</table>

Source: Barrientos and Powell (2004: 15)

2.3.2 Social exclusion and New Labour policy

Following a landslide election victory, New Labour came to power in May 1997 on a promise not to repeat the mistakes of earlier government social policy programmes. Social exclusion was a central part of this agenda, that is, the Third Way politics of equality of opportunity. The term social exclusion rose to prominence in the UK during the first term of the Blair premiership, owing in particular to the setting up of the interdepartmental Social Exclusion Unit (SEU) in December 1997. According to David Miliband (2005: 2), the then Minister of Communities and Local Government, the creation of the SEU represented ‘not just a change of terminology, or governmental plumbing, but a policy departure’ that occurred to address the moral vacuum at the heart of Conservative policy, but also the policy
limitations in inherited assumptions on the Left’ (*Emphasis added*). Social exclusion was defined by New Labour as:

‘A shorthand label for what can happen when individuals or areas suffer from a combination of linked problems such as unemployment, poor skills, low incomes, poor housing, high crime environments, bad health and family breakdown’ (SEU, 1997: 1).

Notably this definition does not refer to citizenship rights, but rather multidimensional disadvantage. Thus, New Labour’s definition is focused on outcomes and ‘makes no reference to the processes that create the problems identified in the definition’ (Percy-Smith, 2000: 4). Inevitably, policies were designed around the symptoms of social exclusion rather than preventative actions to tackle the underlying causes.

Indeed, New Labour implemented a raft of person- and place-based policies to tackle disadvantage. Place policies can be defined as interventions aimed at designated neighbourhoods/settlements, or groups of neighbourhoods which, when taken together, can be regarded a discrete category of places (Griggs *et al.*, 2008). Examples of place-based policies range from comprehensive regeneration schemes, including the New Deal for Communities Programme, to domain-specific neighbourhood renewal initiatives, such as Sure Start (i.e., neighbourhood nurseries, family centres), Employment Zones and Health Action Areas. Person policies include macro-level policies which generate support for individuals and households through the tax and benefit systems (Griggs *et al.*, 2008). Examples include government initiatives to address the problem of low pensioner incomes through the implementation of a Minimum Income Guarantee, strategies to tackle non take-up of benefits by older people, and Winter Fuel Payments. Person policies also include programmes which are applicable to individual needs rather than area specific, such as the New Deal programmes (for specific target groups, such as young adults aged 18-24, the disabled, lone parents, the long-term unemployed aged 25-49, partners of the unemployed, and those aged 50 years or more) and the Connexions strategy, which provides employment, education and training programmes for young people aged 13-18 years.
There are four phases into which the social exclusion agenda can be broadly divided: the establishment of the SEU in 1997 to 2001, when it formed part of the Cabinet Office; 2002 to 2005, when the unit moved to the Office of the Deputy Prime Minister; 2006–2007, when the SEU was merged with the Prime Minister’s Strategy Unit and re-named as the Social Exclusion Taskforce (SETF); and 2007–2010, with the SETF under the Brown government. This discussion is best organised in terms of two periods of engagement with social exclusion. The reason to identify two periods is substantive rather than temporal. Before and after 2006, social exclusion has varied in terms of priority, focus and intensity of activity. The change in the social exclusion agenda is broadly evident in a series of key policy reports (see Table 2.3). Over the fourteen year period in which these documents were written, some concerns remained the same. However, each subtle shift in focus alters the construction of the socially excluded and influences the policy response.
Table 2.3: Description and indicators relating to social exclusion 1997-2011

<table>
<thead>
<tr>
<th>Report/Speech</th>
<th>Description</th>
<th>Individuals/groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tony Blair (1997)</td>
<td>‘The poorest people… the forgotten people’</td>
<td>• Single mothers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Five million people of working age living in homes where nobody works</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• People who have never worked since leaving school</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 150,000 homeless</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 100,000 children not attending school</td>
</tr>
<tr>
<td>Peter Mandelson (1997)</td>
<td>‘Today’s underclass’ ‘Our fellow citizens who lack the means, material and otherwise, to participate in economic, social, cultural and political life in Britain today’.</td>
<td>• 5 million families in which no one of working age works</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 150,000 homeless;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Single parents of children who are not attending school</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3 million people living in the worst 1300 estates</td>
</tr>
<tr>
<td>Social Exclusion Unit (2001)</td>
<td>‘People affected by the most extreme forms of multiple deprivation’ ‘A fraction of one per cent of the population’ ‘People suffering significant problems’</td>
<td>• Teenagers pregnant under 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Young people excluded from school</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Those sleeping rough</td>
</tr>
<tr>
<td>Social Exclusion Unit (2004)</td>
<td>‘Those with multiple disadvantages’</td>
<td>• 16-18s not in learning or work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Alcohol dependents</td>
</tr>
<tr>
<td>David Miliband (2006)</td>
<td>‘Wide exclusion’</td>
<td>Five or more of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Being a lone parent or a single person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Having low qualifications or skills</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Having a physical impairment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Being over 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Being from an ethnic minority group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Living in a region of high unemployment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Those deprived according to a single indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10.1 million working-age adults without an NVQ (National Vocational Qualification) Level 2 qualification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3.8 million working-age people in workless households</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3.2 million children who live in non-decent housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2.2 million older people living in relative low-income households</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 464,000 19-year-olds with no NVQ Level 2 qualifications;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 194,000 16- to 18-year-olds not in education, employment or training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2.2 million children in absolute poverty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3.5 million children in relative poverty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 5.2 million people struggling with basic literacy and numeracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Homeless people</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Housebound elderly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Those who are excluded on multiple counts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Those struggling with basic skills and long-term unemployment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A child in poverty, in poor housing, with a parent suffering mental illness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Homeless, on drugs, without skills, and without family.</td>
</tr>
<tr>
<td>Source: Modified from McNeil (2012: 48-49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tony Blair (2006)</td>
<td>‘Concentrated exclusion’</td>
<td>Deprived areas where there is a geographic concentration of problems</td>
</tr>
</tbody>
</table>
| **Social Exclusion Taskforce (2006)** | ‘The “hardest to reach” families’ | Individuals including:
- Looked after children
- Families with complex problems
- People with mental health issues
- Pregnant teenagers |
| **Social Exclusion Taskforce (2007a)** | ‘Individuals and families who have failed to benefit from the improvements and opportunities available’
‘The 2-3 per cent’ | • Those who suffer from moderate to severe mental health problems
• Young problem drug users
• Young offenders
• 16–18 year olds who are not in employment, education or training
• Children in care
• People who lack functional numeracy or literacy |
| **Social Exclusion Taskforce (2007b)** | ‘Families at risk’ | 2% of families – or 140,000 families across Britain experiencing complex and multiple problems. |
| **Gordon Brown (2009)** | ‘50,000 most chaotic families’ | 50,000 households who have complex needs and have received multi-agency intervention for a considerable period of time |
| **HM Government (2010a)** | ‘Individuals experiencing multiple disadvantage’
‘Individuals persistently experiencing multiple disadvantage’
‘Individuals experiencing multiple disadvantage according to a tighter definition’
‘Individuals persistently experiencing multiple disadvantage according to a tighter definition’ | 11% of UK adults or 5.3 million individuals
7.7% of population 3.7 million individuals
2.5% of all adults or 1.2 million people
1.7% of all adults or 800,000 people |
| **David Cameron (2011)** | ‘Troubled families’ | 120,000 families living troubled and chaotic lives
1. Are involved in crime and anti-social behaviour;
2. Have children not in school;
3. Have an adult on out-of-work benefits;
4. Cause high costs to the public purse |
Before examining the two periods of engagement and drawing conclusions on the potential impact of New Labour’s ‘policy departure’ (Miliband, 2005), at the outset it is important to remember that the concepts of "opportunity for all" and "rights and responsibilities" were key elements of New Labour’s political programme and underpinned the social exclusion agenda. Being in employment, education or training was the main goal of "opportunity for all", ‘with "responsibility" promoted through greater conditionality in the welfare system and "rights" through more programmes aimed at improving services and outcomes in the most disadvantaged areas’ (McNeil, 2012: 20). It is also important to note the terms under which the assessment will be made. The work of Levitas (1998, 2005) is crucial here (see section 1.1.3).

According to Levitas (2005) who was writing prior to the closure of the SEU in 2006, New Labour’s approach demonstrated ‘an inconsistent combination of SID and MUD’ (p. 28), with considerable ‘pulling’ towards the SID ‘in which paid employment is the central means of social integration and social control, and unemployment the overriding element in social exclusion’ (p. 48). Indeed, the labour market was always seen as the most promising route out of poverty and exclusion for all people of working age. Consequently, the labour market served as the main redistributive mechanism for New Labour. The introduction of the national minimum wage in 1999 meant a more regulated labour market. The minimum wage was supposed to address the problem of poverty pay, which exists when the earnings from paid work do not result in a living wage and fail to lift people out of poverty. The higher wage was also to act as an incentive for people to supply their labour (i.e., work more hours, join the labour market). In order to assist entry/re-entry into the labour market, in 1998 New Labour instituted the New Deal programmes for six client groups (see Table 2.4). The young unemployed (i.e., people aged between 18 and 24 who have claimed Job Seekers Allowance for six months) and the long-term unemployed (i.e., those claiming Job Seekers Allowance for over two years) had to participate. Both programmes involved extra help with job search and training, a wage subsidy, and penalties for non-compliance. Under these schemes, those reliant on welfare would ‘lose the whole of their benefit for two weeks’ (Purdy, 2000: 187).
and ‘lose 40% of their benefit indefinitely if they refused to accept one of the welfare-workfare options presented to them’ (Hay, 1999: 121).

Table 2.4: The New Deal programme

<table>
<thead>
<tr>
<th>Client group</th>
<th>Conditions and eligibility</th>
<th>Provision</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24 year olds</td>
<td>Compulsory after unemployed for six months</td>
<td>Personal adviser. Gateway period for four months (advice, guidance, preparation), then one of: training or education, job with wage subsidy, voluntary work, public sector employment through the environmental task force. Help with travel and childcare costs. Sanctions for non-compliance.</td>
</tr>
<tr>
<td>25-49 year olds</td>
<td>Compulsory after unemployed for 18 months</td>
<td>Personal adviser. Gateway period for four months (advice, guidance, preparation), then one of: training or education, job with wage subsidy, work placements. Help with travel and childcare costs. Sanctions for non-compliance.</td>
</tr>
<tr>
<td>Aged 50 and over</td>
<td>Voluntary after unemployed for six months</td>
<td>Personal adviser. Help with job search. One year’s employment credit if move into low-paid work.</td>
</tr>
<tr>
<td>Lone parents</td>
<td>Voluntary for lone parents who are not working</td>
<td>Personal adviser. Help with job search, training, childcare arrangements and in-work support. Financial help for training and childcare. May join other New Deals.</td>
</tr>
<tr>
<td>Partners of unemployed people</td>
<td>Voluntary if partner claiming out-of-work benefit for six months</td>
<td>Personal adviser. Help with job search, training, childcare arrangements and in-work support. Financial help for training and childcare.</td>
</tr>
<tr>
<td>Disabled people</td>
<td>Voluntary if receiving disability-related benefits</td>
<td>Personal adviser and access to job broker.</td>
</tr>
</tbody>
</table>

Source: Compiled from Appendix 3 & 4 of Griggs et al. (2008)

During the first period (i.e., 1997-2006) New Labour not only implemented its policies on welfare to work, it also established the SEU. The purpose of the SEU was to raise the profile of social exclusion and coordinate policy between central government departments, and between central government, local authorities, the voluntary sector and private organisations (SEU, 1997). Initially, the SEU focused on four main issues – truancy and school exclusion (SEU, 1998a), rough sleeping (SEU, 1998b) teenage pregnancy (SEU, 1999a) and young people not in education, employment or training (SEU, 1999b). In all of the reports before mentioned, the SEU sought to frame the issue in terms of social exclusion and apply a broad methodology of costing the problem, analysing the systemic barriers, establishing accountability and focusing departments, authorities and agencies on key measures of success. Its recommendations resulted in a variety of government-funded programmes, but the geographic reach of these programmes was limited. A particular
emphasis was given to those living in deprived areas (Miliband, 2006). Thus, the SEU’s achievements were limited by the relatively few areas in which many of the programmes operated. There was also a specific policy focus on groups of people thought to be ‘at risk’ or presently socially excluded, such as ex-offenders (SEU, 2002a), teenage runaways (SEU, 2002b), children in care (SEU, 2003) and older people (SEU, 2005, 2006). These reports encouraged agencies, along with central and local government, to be aware of their responsibilities in relation to such groups and respond to their needs effectively.

The emphasis on people and place in the early years of the social exclusion agenda was in January 2006 described by David Miliband as ‘wide’ and ‘concentrated’. According to Miliband (2006), the scope reflected political priorities as well as analysis of need. Over time, there was a shift away from discrete issues, vulnerable groups and area-based concentrations of disadvantage to individuals and families facing multiple combined social problems, which Miliband (2006) labelled ‘deep social exclusion’. The population facing deep social exclusion was identified as existing at the intersection of poverty and wider social exclusion: ‘within the large minority of people who are below one or more of the basic minimum standards, there will be some who face exclusion on multiple counts. Here we get closer to a more recognisable definition of social exclusion reflecting the most disadvantaged in society’ (Miliband, 2006: 7).

A visual annotation of the distinction between wide and deep exclusion is displayed in Figure 2.2. To be clear, many people suffer one or more forms of disadvantage. For example, they may live below the poverty line, have a long-term illness or struggle with basic literacy (see Table 2.3 for Miliband’s examples of ‘wide social exclusion’). However, just because a sector of the population (however large or small) may be deprived on a single or small number of indicators does not necessarily mean that they are socially excluded, although they are at-risk of social exclusion (hence the amber colour). Miliband’s (2006) analysis suggests that there is a small group of people who face multiple intractable problems that when combined result in deep social exclusion.
Figure 2.2: Deep and persistent social exclusion
Source: Author’s own elaboration

Miliband’s (2006) examples of ‘deep social exclusion’ are given in Table 2.3. It is apparent from Table 2.3 that the policy focus on unemployment and economic inactivity remained over time, but there was a gradual shift from indicators of deprivation to include indicators of social dysfunction (e.g., learning difficulties, mental illness, family breakdown, criminality, addiction, institutional care). Doubtless, the inclusion of some of these indicators had to do with the election of 2005, during which anti-social behaviour emerged as a key voter concern (Levitas, 2005). Ultimately, the shift to address more acute disadvantage reflects the success – as much as the failure – of policy up to 2006. On the one hand, it was deemed that policies to tackle poverty and wider social exclusion such as the minimum wage, the New Deals and tax credits had helped the majority move from welfare into work (Opportunity for All / Department for Work and Pensions, 2005). That said, according to the Joseph Rowntree Foundation (an organisation which monitors progress in tackling poverty and inequality), although progress was made in several high profile areas, such as employment and education, many measures of "low income" and "work" show a worse picture in 2005 than in 2000 (Aldridge et al., 2011). On the other hand, there was a realisation

Wide exclusion refers to the large number of people disadvantaged on a single or small number of indicator(s).

Deep exclusion refers to people who are disadvantaged on multiple and overlapping dimensions, resulting in severe negative consequences for quality of life and future life chances.
that the SEU’s group-led approach to social exclusion had failed to reach the most severely excluded and some of the poorest, most isolated and vulnerable families (see Table 2.3).

That there should be a stalling of social exclusion outcomes is perhaps not surprising giving that New Labour’s claim of a ‘policy departure’ is questionable on a number of points. First, underpinning New Labour’s approach in particular was a focus on targets, as underlined in a number of government publications, notably the Opportunity for All reports. Beginning in 1999, the reports in the series have charted the success or otherwise of explicit targets towards the reduction of specific social exclusion features, in relation to three population groups – children and young people, people of working age and older people. For children and young people, dimensions of social exclusion focused on education (largely academic test scores, but also school exclusions), health outcomes (such as low-birth weights), family poverty and youth unemployment. For people of working age, dimensions of social exclusion were focussed primarily on unemployment, but also included low income jobs, as well as drug use and homelessness. The dimensions for older people centred on poverty (largely from reliance on state pension, but also from fuel poverty), health and life expectancy, fear of crime, poor housing and lack of independence (Department of Social Security, 1999: 5-7). Doubtless, such a wide range of indicators can be useful in providing a general picture of the extent of social exclusion and also to focus on its specific features. However, there are problems with this battery of single indicators. The problems identified include that they ‘do not distinguish between risk factors and outcomes. They cannot prioritise one indicator, or potential field of intervention, over another. They say nothing about the interaction of different factors’ (Levitas, 2007: 14). The failure to specify the nature of the links which exist between different elements which may constitute the phenomenon is crucial here. For example, reducing unemployment may lead to a reduction in social exclusion, but there is no explanation of to what extent or how, meaning that for New Labour, ‘government is about solving discrete problems’ (Lister, 2001: 433), which to a large extent undermines its ‘multidimensional’ approach.
Second, the major initial focus of New Labour’s approach was a specific emphasis on integration through paid employment (Levitas, 2005). It reflected the twin belief that ‘work strengthens personal independence, fosters greater social inclusion and is the best route out of poverty’ and that ‘there were groups of people locked into long-term dependency on benefits who [had] been denied the opportunities that work can bring’ (Opportunity for All / Department of Work and Pensions, 2006: 5-6). The main policy initiative, as mentioned earlier, was the New Deal. The success of the New Deal is contested and ‘very little information is available about the value of the schemes, in other words how people’s lives have been changed by them’ (Taylor, 2005: 197). ‘The government claimed that the New Deal had assisted around 1.2 million people into paid work between 1998 and 2004, including 535,000 young people and 200,000 unemployed adults’ (Taylor, 2005: 197). However, Taylor (2005: 197) points out that ‘up to the end of 2004 it has been estimated that only 130,000 people actually moved directly from participation in the government’s programme into unsubsidised employment at the end of the process’. Regardless of whether the figures are or are not misleading, the government paid subsidies to participating employers to take on the young and long-term unemployed (Sunley et al., 2006). There was no incentive for employers to provide work experience to other groups (i.e., the disabled, lone parents, partners of the unemployed, and those aged 50 years or more). Thus, a key question is whether the intervention in favour of the young and long-term unemployed was detrimental to other target groups. Another question, closely linked to the previous one, relates to whether the job offered to a New Dealer is genuinely new or permanent. A job that is not new may actually increase social exclusion. The ability of the New Deal to accomplish social inclusion was questioned by Brennan et al as early as 1998 who noted that the policy would involve ‘recycling lower skilled jobs to the socially excluded away from others who were slightly less deprived and disadvantaged’ (Brennan et al., 1998: 4). Put differently, the New Deals were liable to be inefficient as they displace problems to other sections of society.

Third, the assumption that employment is a route out of poverty and social exclusion is questionable. People can be in work and socially excluded, not least because they can be on
low pay/flat wages (which may not cover the rising costs of living - such as food prices, housing costs, utilities, child-care costs, and transport/fuel costs - but also Council Tax), caring for relatives or doing more than one job (which compromises family and/or recreational life). Moreover, the emphasis on work has overshadowed the needs of those for whom work is not an option. For pensioners and severely disabled people an employment-based strategy for alleviating poverty and exclusion is clearly not relevant. Although there was some financial redistribution to pensioners and to some disabled claimants, ‘security for those who cannot work received very little attention’ during Blair’s first term in office (Stewart and Hills, 2005: 21). For example, the work capability test for Incapacity Benefit was strengthened, ‘with a view to reducing the number of recipients’ (Brewer et al., 2002: 505). Again, the response consisted of welfare-to-work (i.e., the New Deal programmes), changes to incentives to make work pay (i.e., minimum wage, Working Families Tax Credit), and action on inequalities by improving public services.

Thus, Levitas argued New Labour understood social inclusion primarily in terms of participation in paid work; it is an understanding based heavily in SID (Levitas, 2005). She also suggested that certain welfare policies, such as benefit sanctions for New Deal participants, have undertones of MUD. However, as pointed out earlier, the SEU has given prominence to specific ‘problem groups’ as the defining feature of social exclusion, which is also a good example of MUD. In this respect, New Labour has ‘discursively placed the unwanted characteristics of the socially excluded as outside those of mainstream society, the effect of which has been to distract attention from the essentially class divided character of society and to make conformity to mainstream society the focus of policy’ (Sealey, 2009: 24). Again, according to Levitas (2005: 28), New Labour’s approach demonstrated ‘an inconsistent combination of SID and MUD’ with considerable ‘pulling’ towards the SID. But the simplification that the Levitas position represents is unfair to New Labour, particularly when considering New Labour’s second term in office (i.e., 2001-2005). There was extensive policy action in this period, such as the raft of person- and place-based polices mentioned earlier, which demonstrates that New Labour’s approach has some foundations in RED.
In New Labour’s second term in government, increases in in-work benefits, such as the Working Families Tax Credits aimed at some working families with children, were accompanied by increases in out-of-work benefits, like Income Support, at least for some client groups (Brewer et al., 2002). Income support rates for single parent families, low-paid families with children and support for pensioners all increased, which is bizarre when considering that, all else being equal, they discourage paid work. The reason why the rates were increased was due to other government objectives. In particular, during the latter stage of his first term Tony Blair announced an aspiration to reduce relative income poverty for children and pensioners (Opportunity for All / Department of Social Security, 1999). Financial redistribution was not possible before 1999 largely because of ‘the Government’s commitment to stick to the previous Conservative Government’s very tight spending plans for its first two years in office’ (Brewer et al., 2002: 8). What limited financial redistribution occurred during and after the second term was done by ‘stealth’. Labour went into the 1997 and 2001 general elections pledging not to increase the standard or top rates of income tax (Labour Party, 1997, 2001). That is to say the emphasis shifted from direct to indirect taxation such as VAT, fuel duty, vehicle exercise duty, fossil fuel levies, stamp duty on house purchases, air passenger duties, tobacco and alcohol duties, insurance premium tax, TV licenses, custom duties etc. (Emmerson et al., 2005).

Moreover, what limited financial redistribution occurred was constrained to ‘improving the situation of those at the bottom relative to the middle with the position of those at the top considered unimportant’ (Stewart and Hills, 2005: 15). Put differently, New Labour was concerned more about the distance between the bottom of the income distribution and the middle, and less about the distance between the middle and the top. Furthermore, the concern was with children and pensioners. There was little sympathy for working-age singles and couples without children or with non-dependent children (Stewart and Hills, 2005). Again, work was viewed as the best form of welfare for working-age adults. This criticism specifically questions the narrow focus of New Labour’s Third Way within which, as mentioned earlier, ‘problem selection’ is prioritised over ‘problem definition’. For New
Labour, the concern was not income poverty per se or overall income inequality, but a reduction in inequality in the bottom half of the income distribution, at least for children and pensioners.

Consequently, means-tested benefits were prioritised over universal benefits. To be clear, means-tested benefits are based mainly on a test of income, though some also include tests of assets or capital. The key means-tested benefits are Pension Credit, Jobseekers Allowance, Employment and Support Allowance, Income Support and (since 2013) Child Benefit. Means-tests are extensively criticised in the literature – see, for example, Lister (1997) and Spicker (2014). Briefly, the advantages of means tests are they concentrate financial resources on those most in need and they are progressive, meaning they redistribute resources vertically from rich to poor. The disadvantages are: ‘they are complex and difficult to administer; they often fail to reach those in need [the reasons commonly given for low take-up are ignorance, complexity, the effect of changing circumstances, fear, stigma, and the history of means-testing]; people’s income changes rapidly [thus effective means-testing calls for constant reporting and frequent adjustment in the level of benefit]’ (Spicker, 2014: 2); and, ‘because it is based on the joint incomes of couples, it threatens to undermine women’s financial independence and means that one partner’s economic activity affects the other’s benefit entitlement’ (Lister, 1997: 8).

The main concern is that a means-tested approach is ‘likely to marginalise the poor and their interests even further as the rest of society no longer has any stake in the welfare system’ (Lister, 1997: 8). This position was adopted by the Institute of Fiscal Studies who warned New Labour, ‘the extension of means-tested benefits might lead to a drop in support for the welfare state as the benefits are concentrated at the bottom of the income distribution, and so offer little to the supposedly crucial voters of so-called middle Britain’ (Brewer et al., 2002: 12). Means tests thus, many would argue, represent a force for social exclusion rather than inclusion. Perhaps these concerns were partly why New Labour introduced universal
benefits for the elderly, such as free eye tests, free prescriptions, the Winter Fuel Allowance, free TV licences and free bus passes.

It could be argued those perks for the rich were necessary for persuading them to help out their less fortunate fellow citizens. But there are strong principled reasons why means-tested benefits are important. For a start, a welfare state should not collect taxes from everyone – including from the least well-off – and then arbitrarily give some of that cash back to people who do not really need it. Consider also Child Benefit which, until relatively recently, was a universal benefit with take-up as high as 99 per cent in some years (Spicker, 2014). Doubtless, child benefit involved redistribution from poor single persons and poor couples without children to better-off families. Another reason for defending redistribution and ensuring the wealthiest contribute back to society with no expectation of receiving a bribe to do so is partly captured by the report of the CSJ which stated that, ‘taxes are the contribution that we all make towards building a better society. Taxation in a democratic society is based upon consent; it is a desirable good, not a necessary evil… fair taxes, wisely and efficiently used, are a responsibility we should share and accept’ (CSJ, 1994: 376. Emphasis added). The point here is taxes pay for public services (health, education, transport etc.) which benefit all private citizens (even if the rich do not use those services themselves) which in turn creates the conditions for a prosperous society. Thus, redistribution through means-tests, together with direct taxation ensuring that those who earn most pay most, need not be a force for social exclusion. Arguably, it is necessary in the drive towards social inclusion and cohesion.

The discussion so far has related to 1997-2006. The second period of the social exclusion agenda began in June 2006. It was marked by the announcement of the closure of the nine-year-old SEU, with its work transferred to a smaller Social Exclusion Task Force (SETF) in the Cabinet Office. Although a ‘cross-departmental’ approach remained at the heart of the SETF (SETF, 2006), its reduced size and profile suggests that social exclusion was no longer at the heart of government policy itself. The SETF adopted as its core focus the ‘2.5
per cent of every generation caught in a lifetime of disadvantage and harm’, as set out in *Reaching Out: An Action Plan on Social Exclusion* (SETF, 2006: 5). This report builds on the distinction between wide and deep exclusion, and translates Miliband’s (2006) analysis into a critique of ‘why even some of our most ambitious programmes aimed at breaking the cycle of deprivation have had only a modest impact to date on the most excluded’ (SETF, 2006: 20). The assessment was that, while there had been success in reducing poverty and wider social exclusion in the general population, ‘a small minority’ had effectively been left behind, and this minority was suffering from ‘deep and persistent social exclusion’ (SETF, 2006: 8).

Significantly, *Reaching Out: An Action Plan on Social Exclusion* (hereafter referred to as "the Action Plan") recognises that for this minority, the barriers are not only economic but also social and cultural (see SETF, 2006: 17-20). More significantly, there was an acknowledgement of the perverse consequences of the group-led approach that characterised earlier efforts:

‘Individual agencies do generally focus on improving outcomes for the neediest within their services (for example the most mentally ill or the most prolific offenders) but often miss those who have multiple needs but need less help from any one service. Thus, people may not meet the threshold of any given agency to trigger a fuller intervention – despite the scale of their problems or the harms caused to the communities in which they live’ (SETF, 2006: 74).

There was a realisation that methods had to change, and this realisation led to an increased focus on the principles of early intervention, systematically identifying what works, better co-ordination of the many separate agencies, personalisation, and intolerance of poor performance (see Table 2.5).
Table 2.5: Reaching Out - guiding principles

<table>
<thead>
<tr>
<th>Problem</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not knowing who is likely to be excluded until they already are</td>
<td>Better identification and early intervention: We will identify early who is at risk of persistent exclusion and use this information to intervene and more effectively support those most in need before disadvantage becomes entrenched.</td>
</tr>
<tr>
<td>Variable and ineffective practice</td>
<td>Identifying what works: We will systematically identify and promote interventions that work. To ensure effective adoption of best practice, we will build the capability of providers and commissioners.</td>
</tr>
<tr>
<td>Poor coordination between services, and perverse incentives discouraging cooperation</td>
<td>Multi-agency working: We will break down barriers and enhance flexibility so local providers and agencies can work together to meet the needs of excluded groups, especially those facing multiple problems.</td>
</tr>
<tr>
<td>Multifaceted problems having to fit around services rather than services fitting around the individual’s needs, and with little persistence or follow-through</td>
<td>Personalisation, rights and responsibilities: We will tailor services to the needs of the individual. We will empower, where it is appropriate, excluded groups to make choices or ensure there is an independent, trusted third party to work on their behalf. Our approach will be framed by a clear understanding of the rights and responsibilities of citizens, services and the community.</td>
</tr>
<tr>
<td>Variable and poor outcomes across areas and service providers</td>
<td>Supporting achievement and managing underperformance: Where local authorities and services are delivering, Government will leave them alone. But where there is underperformance, Government will intervene.</td>
</tr>
</tbody>
</table>

Source: SETF (2006: 22)

It also identified the need for a ‘lifetime approach’:

‘System reform can take years to deliver, and results can take decades to show. We will supplement our drive for deeper reform with more focused and immediate action that we are confident will make a difference. This Action Plan establishes a range of specific proposals that we believe to be of pivotal importance throughout an individual’s lifetime, both in terms of their impact on the life chances of the most excluded and in order to strengthen the case for wider reforms’ (SETF, 2006: 10).

Thus, in the Action Plan, a lifecycle approach is adopted, where policy/action is focused around age cohorts (see Figure 2.3). As can be seen, there are three age cohorts and, in the case of ‘children and teenagers at risk’ and ‘adults facing chronic social exclusion’, these cohorts are further broken down into at-risk target groups. Programmes are focussed on addressing the multiple issues and/or barriers facing the age cohorts in general and minority groups in particular.
The Action Plan stressed that breaking the cycle of disadvantage involves early intervention and prevention. A particular emphasis was placed on parenting and the early years (due to research showing their life-long impact on education, emotional wellbeing and resilience), and identification of the most at-risk households. The Action Plan argued that the process of identification should start before individuals are born and identified a number of ‘risk factors’, which, it announced, community midwives, health professionals and social workers will use to diagnose an unborn child’s potential for future misbehaviour and exclusion (see Table 2.6).

Table 2.6: Early years – risk factors

<table>
<thead>
<tr>
<th>Pre-birth</th>
<th>Post-birth (age 0-2 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prematurity/birth factors</td>
<td>• Impaired attachment</td>
</tr>
<tr>
<td>• Obstetric difficulties</td>
<td>• Infant’s temperament</td>
</tr>
<tr>
<td>• Genetic predisposition</td>
<td>• Postnatal depression</td>
</tr>
<tr>
<td>• Stress in pregnancy</td>
<td>• Harsh parenting style</td>
</tr>
<tr>
<td>• Teenage pregnancy</td>
<td>• Rejection</td>
</tr>
<tr>
<td>• Smoking in pregnancy</td>
<td>• Hitting/frequent smacking</td>
</tr>
<tr>
<td>• Neglected neighbourhood</td>
<td>• Low level of stimulation</td>
</tr>
<tr>
<td>• Low income</td>
<td>• Socio-economic stress</td>
</tr>
<tr>
<td>• Poor housing</td>
<td></td>
</tr>
</tbody>
</table>

Source: SETF (2006: 46)
The existence of any or a combination of these factors could be enough to trigger intervention. Initiatives aimed at families and children included:

- health-led home visiting parenting support programmes based on the US Family-Nurse Partnerships (FNPs) model to provide intensive, home-based support for first-time mothers at risk during pregnancy and the first two years of a child’s life. FNPs sought to improve mother-baby attachments and breastfeeding rates, reduce smoking during pregnancy, improve maternal health and diet and promote education and employment opportunities (see SETF, 2006: 52);

- Multi-Systemic Therapy programmes aimed at children and parents with emotional and behavioural problems (see SETF, 2006: 67);

- Treatment Foster Care programmes (a home-based alternative to group homes for children in care) to improve outcomes for children (see SETF, 2006: 67);

- a revised teenage pregnancy strategy (see SETF, 2006: 66); and,

- the development of commissioning tools and databases on evidence-based parenting programmes and intensive interventions (see SETF, 2006: 28-31).

This focus and approach informed the Families at risk review, which set out the principles and guidelines for what would become known as New Labour’s Think Family approach to social exclusion. Reaching Out: Think Family was published in June 2007. This report identifies 140,000 severely disadvantaged families (about 2% of families across Britain) as a target group in recognition that:

‘parental and wider family problems… cast a shadow that spans whole lifetimes and indeed passes down the generations. These family experiences can limit aspiration, reinforce cycles of poverty and provide poor models of behaviour that can have an impact on a child’s development and well-being, with significant costs for public services and the wider community’ (SETF, 2007a: 1).
While there was a tacit acknowledgement of wider societal barriers that inhibit inclusion (see SETF, 2007a: 15), overwhelming emphasis is placed upon the need to tackle what was perceived to be pathological family dysfunction. Parents and families were deemed a risk to children in the sense of unacceptable behaviour, values and intentions – in the main associated with substance misuse, high family conflict, domestic violence, parental neglect, anti-social behaviour, and criminality (see SETF, 2007a: 15). The SETF stated that *Think Family* ‘is not a debate on the shape of families and we will not try to incentivise or engineer particular family structures’ – rather, the emphasis was on the degree and severity of ‘risk factors children face from their environment’ (SETF, 2007a: 1). The report called for greater integration between adult and children’s services. For example, prisons and children’s social services, specifically ensuring a family gets the support it needs when a parent goes into jail, or comes out of jail. The report also called for more investment in family focused initiatives, such as Family Intervention Projects (FIPs). Introduced in 2006, FIPs are delivered by a combination of statutory agencies and social partners and

‘provide holistic support designed to target some of the most disadvantaged and problematic families and improve their behaviour and deliver other outcomes. Interventions vary in intensity, partly reflecting the severity of the problems involved. These range from home visits and coordination of different service interventions, to full residential interventions where the family lives in adapted accommodation with 24-hour supervision and support’ (SETF, 2006: 39).

Sanctions are seen as integral to the success of FIPs:

‘The use of sanctions is an important lever for motivating families to change. Demoting tenancies or gaining possession orders suspended on the basis of compliance with the projects or, for some, the very real prospect of children being taken into care, can provide the wake up call to take the help on offer’ (HM Government, 2010b: 1).

Premised on the idea that parental irresponsibility and family dysfunction are the main causes of social exclusion, FIPs have their origins within the moral underclass discourse. White *et al* (2008) undertook an independent evaluation of the 53 FIPs established during 2006 and 2007. They found that following participation in a FIP, levels of crime and anti-social behaviour declined considerably, the risk of eviction for families was reduced and several outcomes for
young people were improved, particularly with respect to truancy, exclusion and/or bad behaviour at school. However, no evidence was found for improved outcomes in relation to education, employment, health, or family functioning.

In summary, the SETF adopted as its core focus the ‘2.5 per cent of every generation caught in a lifetime of disadvantage and harm’ (SETF, 2006: 5). This intractability was understood to stem in part from the way policies and services are designed. The assessment was that, because this problem is deeply systemic, severe and multiple disadvantage had been insufficiently acknowledged and targeted. As a result, the SETF set out a new vision for social exclusion policy in which all responses are underpinned by five key principles (see Table 2.5). In this respect, the explicit linkage of policy to social exclusion objectives and principles has marked an observable shift from the SEU’s approach. With respect to the SEU, the focus was never at the people with the most complex needs. The SEU focused on highly visible social problems and particular groups. How the SEU, Tony Blair and other key ministers selected the groups was largely political: ‘it was partly led by who they felt was falling through cracks between departments; however, it was also led by who had the most political purchase, who attracted the interest of politicians at the time, for example on teenage pregnancy’ (McNeil, 2012: 23).

For the SETF, references to ‘disadvantage and harm’ are accompanied by prioritisation of ‘specific hard-to-reach groups’ (SETF, 2006: 95) and an emphasis on early intervention. In this sense, the SETF focused strongly on young people ‘at risk’ and ‘problem families’, although there was also a concern with ‘adults facing chronic exclusion’. With respect to the latter, the SETF specified four target-groups who, together with young people ‘at risk’ and ‘problem families’, constitute ‘the 2.5 per cent’ (see Figure 2.3). The SETF assumed that many members of these small groups are likely to have ‘chaotic lives and multiple needs’ (SETF, 2006: 71). Although these terms were not defined, groups such as homeless people, asylum seekers, undocumented migrants, sex workers, travelling communities and addiction sufferers may be variously identified in this sense. This list is not
exhaustive and only aims to suggest some additional groups likely to experience multiple, entrenched and hidden needs.

The point of the list is to highlight that ‘the 2.5 per cent’ is far from a homogenous group, which raises a series of questions. For instance: what, if anything, do all these sub-groups have in common that warrants speaking about them in aggregate? Do these sub-groups have a considerably different experience of either social exclusion or of the provision of services to meet it? Furthermore, by identifying a number of sub-groups within ‘the 2.5 per cent’, is there a risk of over-simplifying the experiences and needs of those who fall within the same sub-groups? The reasons why people are in a particular sub-group may differ considerably, as might their need for services and support. For example, within the homeless population, there will be individuals whose exclusion is much deeper than others. Another issue, closely linked to the previous one, is that one establishes a false distinction between someone suffering five counts of social exclusion and someone suffering six. There is a tension to be reconciled then, between severity of need and multiplicity of need. One partial solution to this problem is to approach social exclusion through the lens of different domains (e.g., in terms of a hierarchy of domains, topics and indicators), rather than its impact on disadvantaged groups, not least because their individual characteristics vary and are dynamic.

In conclusion then, in the period 2006-2010, New Labour understood that people who face severe and multiple disadvantage need different forms of support. The welfare state plus universal public services are not enough. This realisation led to more targeted and intensive interventions. The mistake made by New Labour was that it focused exclusively on ‘the 2.5 per cent’, which had the effect of diverting attention away from social exclusion within the wider context of poverty and societal disadvantage. The emphasis on ‘the 2.5 per cent’ can be seen as locating policy in general towards the ‘anti-egalitarianism’ emphasis of the right, rather than the ‘egalitarianism’ of the left. Specifically, it suggests that the problems of alienation, isolation and poor life chances are confined to a tiny minority people. The implication being that social exclusion policy only needed to concentrate on a small number
of individuals and families. With respect to the analysis and policy prescriptions which emerged from the SETF, they have much more in common with the moral underclass discourse than the redistributionist discourse.

2.3.3 Social exclusion policy under the Coalition

With the election of the Conservative-Liberal Democrat Coalition Government in May 2010, the social exclusion agenda entered a new phase. It was marked by the announcement of the closure of the SETF, with its staff being absorbed into a new Office for Civil Society (OCS). The remit of the OCS was to promote the Conservative Party’s "Big Society" agenda (Cabinet Office, 2010), which sought a retreat from state intervention and a greater role for citizens, communities, voluntary agencies and the private sector in problem solving and service delivery. Issues of multiple disadvantage were made the responsibility of the Department for Work and Pensions (DWP) (Cabinet Office, 2010). A review of the DWP’s literature reveals the term ‘social justice’ is substituted for ‘social exclusion’. The Coalition’s ‘social justice’ strategy also focuses on a narrow group facing entrenched social disadvantage and poverty, the causes of which are attributed to ‘family breakdown, educational failure, welfare dependency, debt, drug dependency, or some other relevant factor. Many people are beset by a combination of these factors, interlinking with one another and driving a cycle of deprivation’ (DWP, 2012: 10). As with Reaching Out, overwhelming emphasis is placed upon the health and stability of the family unit, which is perceived as being at the heart of the problem and the solution. Thus, FIPs continue to form a key part of the Coalition’s social exclusion strategy and, in December 2010, David Cameron announced he would extend the initiative to cover 120,000 ‘troubled’ families by March 2015. Local authorities wishing to access the programme’s funding (which amounts to up to £4000 per family) are to use a four point criteria for identifying eligible families, as set out in Table 2.3.

The location of intervention is therefore set at a family rather than societal level. Indeed, like New Labour, the Coalition neglected the role structural forces play in producing
and worsening aspects of multiple disadvantage. It articulated a strongly behavioural account of poverty and disadvantage, as perhaps most evident from the setting up of the Behavioural Insight Team (BIT) in the Cabinet Office in 2010. As the forward of one early report published by the BIT argued, ‘many of the biggest policy challenges we are now facing… will only be resolved if we are successful in persuading people to change their behaviour, their lifestyles or their existing habits’ (Dolan et al., 2010: 4). The moral underclass discourse has permeated virtually every aspect of the Coalition’s welfare agenda, justifying ruthless policy responses such as the benefits cap, bedroom tax, the slashing of working tax credits, child tax credits, Council Tax relief, Housing Benefit payments and disability benefits, as well as the withdrawal of Health in Pregnancy Grant, the Sure Start Maternity Grant, Child Trust Funds and Educational Maintenance Allowance. The list goes on. Indeed, the Conservative-Liberal Democrat Coalition Government introduced radical public spending cuts and asserted that ‘reducing the national deficit’ is its social and economic policy priority. The Coalition’s deficit reduction agenda has not only involved unprecedented welfare reforms, but also drastic cuts in public services. Campaigners have particularly raised concerns about cuts in the following services: community midwife services, prevention initiatives in health promotion, mental health support, outreach work (e.g., substance misuse, rough sleeping), youth centres and services, family and parenting support, care and respite services as well as leisure and recreation services (e.g., community art projects, library services). Thus, the current economic and social turmoil being experienced in many spheres of society by many people across Britain makes the need for examinations of the patterns and processes of generalised disadvantage even more pressing.

2.4 Summary

The evolution of the concept of social exclusion, from its origins in France in the 1970s, has been documented. Initially, this chapter reviewed the conditions in which the concept of social exclusion arose. It argued specifically that, in the context of globalisation and changing economic conditions, ‘social exclusion is related to the deep economic
restructuring necessitated by growing competition in the emerging global economy’ (Bhalla and Lapeyre, 1997: 415). Certainly, within the European context, there is an acceptance that economic change serves to impoverish and alienate large sectors of the population in a multidimensional fashion. The European Union has varied over time in how it sees that process of alienation being overcome. Integration into employment is prominent in its reform agenda but civic, social and interpersonal integration is also present. However, the approach to social exclusion has, in practice, reflected a more limited concern with labour market exclusion.

This chapter has also examined how New Labour developed the concept of social exclusion to explain disadvantage in the UK since 1997. It is hard to avoid the conclusion that New Labour did not regard social exclusion as a characteristic feature of contemporary society, that is, an endemic phenomenon stemming from structural changes. Rather, the concept of social exclusion as used by New Labour reflects the idea that it is incumbent upon a kind or category of individual, and so does not signify a shift of perspective beyond the poverty paradigm. Furthermore, with regard to the claim made by New Labour of substantive change in the shift from poverty to social exclusion, significant limitations can be seen in New Labour’s approach. For a start, New Labour’s definition is focussed on outcomes and ‘makes no reference to the processes that create the problems identified in the definition’ (Percy-Smith, 2000: 4). A good example of New Labour’s key features approach is the emphasis on a range of indicators for social exclusion within the Opportunity for All reports. At first glance, the emphasis on a wide range of indicators can be seen as addressing the weaknesses of the poverty approach to societal disadvantage. However, the point here is that New Labour’s usage of social exclusion is atheoretical. As the analysis has shown, there is a lack of consistency and rigor in the understanding of how social exclusion comes about. Indeed, it is very difficult to identify what New Labour considers risk factors and outcomes, suggesting there is confusion of ‘causation’ with ‘correlation’. Another issue, closely related to the previous one, is the failure to specify the nature of the links which exist between different elements which may constitute the phenomenon, which to a large extent undermined New Labour’s ‘multidimensional’ approach.
New Labour’s specific articulation of the individual ‘causes’ of social exclusion makes itself readily apparent in policy, concentrating on the most visible and extreme issues which are likely to capture the attention of the wider public such as street homelessness, teenage mothers, the problems of the most deprived neighbourhoods, crime and policies to tackle anti-social behaviour. Moreover, policies like the New Deal and Sure Start are also in keeping with the emphasis in its definition of social exclusion on specific problem groups. Thus, the downgrading of the SEU to the SETF in 2006 did not occur as a result of social exclusion being solved, but rather, from a realisation that the group-led approach had failed to reach the most severely excluded and some of the poorest, most isolated and vulnerable families. This shift to address the characteristics of ‘the 2.5 per cent’ and move away from the early, more universalist underpinnings of the social exclusion agenda represented a move away from considering social exclusion within the wider context of poverty and disadvantage and meant social exclusion policy was targeted at a relatively small group. New Labour, and subsequently the Conservative-Liberal Democrat Coalition and present Conservative government, assumed that the problems of isolation, alienation and poor life chances are confined to a tiny minority, rather than a larger population. Arguably, targeted policies concentrating on those with accentuated needs over a period of time are a complement but not a substitute for more generic policies.

The criticisms above specifically question the narrow focus of New Labour’s approach within which ‘problem selection’ is prioritised over ‘problem definition’. That such limitations are observable in New Labour’s approach can be seen as relating to its overall emphasis on ‘equality of opportunity’ over ‘equality of outcome’. The former is a fragmented discourse – it is also a more conservative discourse, not least because the socially excluded are usually discussed in relatively isolated terms and as employed is a behavioural account of poverty and disadvantage. Ultimately, overwhelming emphasis on equality of opportunity meant individualistically-centred policies, and these policies mark out New Labour’s approach, and indeed the Coalition’s approach, as a weak form of social exclusion, rather than
strong form (see section 1.1.3). In closing, it is crucial to make explicit a key point from the above review. Regarding the social exclusion agenda, the problems and challenges facing seaside residents are notable by their absence.
Chapter 3

Understanding Seaside Resort Change

This review of the literature and existing evidence on seaside resorts aims to provide a statement about what is known about resort change in the UK at the present time. It argues that little attention has been paid to the non-touristic dimensions of resorts and develops a framework for understanding socio-economic resort change. The framework outlined in this chapter has two main purposes. First, it specifies the main variables which influence socio-economic resort change more clearly. Second, it provides a basis for subsequent analysis, undertaken in the methodology, to determine how the variables are represented by the available data. The review followed the traditional approach used in the social sciences. Books, articles and reports were searched for, initially with a broad focus on the concept of ‘resort development’ (i.e., evolution, transformation and restructuring) and developing to explore more specific topics and ideas associated with ‘area change’, ‘area-based deprivation’ and ‘concentrated social exclusion’. Given the context for the review, attention was concentrated on recent UK literature, and on seaside resorts and disadvantaged localities, although sources from other countries in the developed world were investigated where these appeared to provide evidence particularly relevant to the UK context. From this literature, three principal questions have been formulated (Figure 3.1). Perhaps the most immediate question from a policy perspective is how are seaside resorts changing? What aspects of resorts are changing and at what pace? However, it is also necessary to know what causes seaside resorts to change, and which causal factors seem to be driving the changes observed at present. Lastly, of interest might be the implications of seaside resort change for public policy on regeneration.

Figure 3.1: Issues in socio-economic resort change
Source: Author’s own elaboration

Causes of resort change Aspects and directions of resort change Implications of resort change
These questions and particularly the first two form the focus of this review. To be clear, this chapter is concerned with the changing nature of English seaside resorts. The history of the development of these pleasure landscapes has already been extensively documented and discussed in the literature (e.g., Gilbert, 1939; Walvin, 1978; Walton, 1983, 2000; Huggins, 1984; Farrant, 1987; Urry, 1990; Soane, 1992; Fletcher, 1993; Shaw and Williams, 1997; Morgan and Pritchard, 1999; Walton, 2000). Thus, it is not within the scope of this chapter to explore, in great depth, the large literature that covers the history of the seaside. However, what is necessary is a short background to inform the forthcoming investigation on contemporary socio-economic resort change.

3.1 The development of seaside resorts in Britain

It is widely accepted that the idea of taking a seaside holiday dates back to the eighteenth century. The initial growth of the seaside holiday stemmed from a belief that the sea water, like that of the earlier spa, had medicinal properties (Walton, 1983; Walvin, 1978). The proletariat was excluded from such benefits, at least until the development of the railways and the Industrial Revolution of the nineteenth century. The democratisation of the seaside holiday resulted from specific aspects of general industrialisation. Several writers have thoroughly discussed the factors that culminated in attracting working-class residential tourists to the seaside (e.g., Walvin, 1978; Walton, 1983; Urry, 1990). In brief, these include: (1) cheap and effective transport to a suitable coastline; (2) the working classes had to have sufficient income to afford a holiday in times when holidays were not paid; (3) the seaside visitors would need several days holiday back-to-back in the summer; (4) the resorts had to have sufficient facilities, supply must meet demand; and, (5) the labour force must choose to spend their hard earned saved income at the seaside, so the resorts needed to be attractive.

Thus, various factors – including mobility, affluence, time, supply and demand – enabled the appeal of the seaside to trickle down through society. To satisfy demand, resorts were developed around the coastline to accommodate a variety of budgets and tastes (Urry,
Eventually, resorts became places where different classes of people mixed together and social conflict occurred between classes with very different lifestyles. As noted by Walton (1983: 3), ‘the seaside brought mutually incompatible modes of recreation and enjoyment into close proximity’. Many resorts were seen as liminal, that is, ‘as an exceptional and distinctive place where normal limitations did not apply, at least quite as much as normal’ (Walton, 2000: 104). Consequently, the behaviour and practices associated with these places also came to disturb people that lived in them. According to Farrant (1987: 137), ‘from the 1880s, the expectations of residents who wished to preserve the social tone and image of these places increasingly diverged from the aims of those whose livelihood depended upon providing tourist attractions’.

Many variables influenced resort development, including land ownership, local government, entrepreneurial activity, topography and transport (Huggins, 1984; Soane, 1992; Fletcher, 1993; Shaw and Williams, 2004). Some resorts were ‘fashioned on sandy wastes originally devoid of settlement’ (Barrett, 1958: 1). However, most resorts were grafted onto a pre-existing settlement (i.e., town, village, hamlet). Some of these settlements were not only resorts but had functions such as harbours, ports or market centres too (Barrett, 1958). Thus, in several instances, the development of resort activities coincided with the continued development of maritime activities. Changes in the relative importance of such economic activities meant some places had a short affair with tourism. For example, Bootle, Gravesend, Southampton, Swansea and Tynemouth flirted with tourism in 1800s, but their resort functions had edged away to take a back-stage role (relative to other economic activities) by Victorian times (Walton, 1983). The concentration of certain maritime activities in fewer and larger places resulted in the stagnation and decline of other places, which would be rescued by tourism. Old maritime towns rescued by resort development include, for example, Brighton, Deal, Folkestone, Margate, Newquay, St. Ives, Tenby, Weymouth and Whitby (Barrett, 1958). By the early twentieth century, there were nearly 150 resorts and

‘Britain, and England in particular, had a system of coastal resorts whose scale and complexity was unmatched anywhere else in the world’ (Walton, 2000: 27).
The growth of seaside resorts was to continue, driven by the expansion of the domestic seaside holidaymaking industry. However, the boom in tourism did not last. From the 1970s, many seaside resorts were experiencing a slow, but cumulative ‘decline’ (Agarwal, 2005). Although ‘decline’ is not really defined in the academic literature, it is a word that, in the context of destination development, conjures up a multitude of undesirable changes. Descriptions of ‘resort decline’ variously emphasises decline in: tourist volumes and expenditure; tourism-related employment and income; resorts’ market share; environmental quality of destination; quality of visitor experience; appeal and investment. However, the central issue is assumed to be decline in tourist volumes, expenditure and market share.

The statistics that quantify this decline deserve a thorough explanation and should be treated with caution. Agarwal (1997a) clearly outlines the deficiencies that hamper understanding of resort decline, such issues falling under the specific areas of temporal discontinuity, spatial scope of analysis, lack of standardisation and reliability. The problems identified include:

‘tourism data are often collected on a district basis and that which is available for seaside resorts are often not directly comparable either over a period of time or between individual resorts as the parameters of the information collection vary greatly even between local governments. Also tourism statistics are particularly prone to errors, omissions and oversights that are frequently incorporated within the data’ (Agarwal and Brunt, 2006: 660).

Large-scale seaside tourism surveys invariably gather information based on a sample (of registered accommodation; of individuals’ spend) which are then calculated for the population as a whole to produce statistics on trips or expenditure. Such estimates are further complicated by the fact that ‘staying visits to the seaside have been measured on a national basis since the 1970s, but there is no equivalent data for day visits’ (Middleton, 2001: 86). However, day visits and informal accommodation establishments and enterprises are probably very important in some resorts. Another issue is that ‘seaside’ does not always correspond to seaside resorts. Some ad-hoc assessments from consultants and official bodies have focused on well-defined seaside resorts, while others have covered the surrounding hinterland or
whole local authority districts (Middleton, 2001). Consequently, as Agarwal and Brunt (2006) have pointed out, some assessments incorporate tourism centres, for example, caravan and camp sites and holiday parks, in essentially rural coastal locations.

The limitations associated with tourism-related data have serious implications. In terms of this research, demonstrating a link between resort decline and social exclusion is problematic. More broadly, the failure of resorts, historically and presently, to systematically collect tourism data has been, and is, a barrier to effective ‘decision-making’, which is ‘a factor that has contributed to their decline’ (Gale, 2007: 23). Furthermore, the extreme paucity of data relating specifically to seaside resorts and the non-standard way in which tourism information is collated means that any attempt to interpret tourism trends for English seaside resorts over the short term is fraught with difficulty. Nonetheless, such data do provide an indication of the overall scale of resort decline. For example, an England Tourism Council (2001) report showed that, in the period 1973-1998, English seaside tourism had fallen from 32 million to 22 million trips while total domestic tourism remained more or less constant at 100 million trips. Over the same time period, the number of nights (i.e., one or more nights) spent on English seaside tourism had almost halved from 193 million to 104 million. Another report, by English Heritage (2003), paints a similar picture. Outlining the challenges facing resorts, which include failing to satisfy visitor expectations, English Heritage noted that in 1968 holidays in seaside resorts accounted for 75% of main holidays, but by 1999 that figure was only 44%. Thus, the data suggests that the number of holidays taken by the seaside was in decline, but still very important. It is clear that resorts have been subject to much change, with the latter being studied through a number of different approaches.

3.1.1 Approaches to studying resort development

Research evidence on resort development comprises three main strands of work. One is the morphology study, focusing on the detailed understanding of the form (i.e., the shape, appearance and configuration of the natural and built environment) and function of a resort,
and primarily using mixed methods to describe and explain change. Such studies have a relatively long history. Gilbert (1939) was one of the first geographers to discuss in general terms the layout and morphology of resorts. Gilbert (1939) recognised that tourism was modifying the landscape and transforming the settlement patterns on the English coast and distinguished resort towns from others. With a follow-up longitudinal study on Brighton, Gilbert (1949) drew attention to the changing spatial patterns and landscapes associated with resort development, and the reasons for these patterns, which included tourism urbanisation and transport evolution. Gilbert’s research was followed by some important descriptive work based on social histories and case studies, which appeared concurrently with the beginning of morphological modelling.

In brief, morphological models may be divided into three categories: (1) static models (spatial axis emphasised); (2) historical models (temporal axis emphasised – often linked to theoretical models of resort development); and (3) integrated models (wider contextual factors and general applicability emphasised) (see Liu and Wall, 2009 for a review). Existing models of coastal resorts fall within the former two categories. Census data, holiday brochures and field maps dominated the early research, which described the spatial location of resort infrastructure and tourism activity. While Gilbert (1939, 1949) studied individual resorts, Barrett (1958) developed a generic model based on observations of features common to many seaside resorts of England and Wales. He undertook the only major national study of the layout and morphology of eighty seaside resorts, which found common features such as linear development along the coast, with the ‘frontal strip’ surrounded by numerous zones of resort activity, including recreational, commercial and residential districts, and density and price hierarchy.

Beginning in the 1980s, the resort morphology research agenda shifted away from a focus on the forms and functions of resorts towards the relationships between them, and how they changed over time. This body of work, again mainly focusing on the detailed understanding of individual resorts, has employed additional techniques, such as the
interpretation of aerial photography involving time-series data, to describe and explain within-resort change at different stages of resort evolution. Attention turned away from European coastal resorts but the focus on physical features and land use patterns remained. The neglect of the socioeconomic dimensions of coastal resorts, and the overwhelming emphasis on localised explanations (i.e., within-resort causal links) rather than wider change processes, has been criticism levelled at this body of work (Shaw and Agarwal, 2007).

A second strand of resort development studies, derived mainly from the sub-field of tourism geography, focuses on investigating the patterns (and processes, albeit to a lesser extent) whereby tourist areas evolve temporally through a number of stages or phases. This strand of work, which has developed mainly since the 1980s, has resulted in several theoretical models of resort development (e.g., Miossec, 1977; Butler, 1980; Gorsem, 1981; Wolfe, 1983; Young, 1983). Such representations ultimately are related to Christaller (1963) and his seminal work, which applied central place theory to tourism. Considering the spatial location of tourism within Europe, Christaller (1963) observed that tourism generally occurred in areas within countries away from industrial and urban agglomerations. Christaller’s work was significant in that he convincingly described how tourist resorts as peripheral places undergo a ‘typical course of development’, proceeding from exclusive development through expansion and into decline as fashions changed and competition developed (see Christaller, 1963: 103 for a description of this process). These ideas were particularly influential on some later theorists of tourism, namely Cohen (1972) and Turner and Ash (1975), who have stressed the significance of the ‘explorer’ or ‘drifter’ in opening up peripheral areas to successive touristic intrusions, and Plog (1974), who related the rise and fall of destinations to the personal preferences and psychological characteristics of tourists. Thus, during the 1970s, several tourist typologies were devised (see Shaw and Williams, 1994: 68-75 for a review), all of which identified mass tourism as the final stage in the evolution of resorts.
Of the models devised to understand the dynamic nature of resort development, the Tourist Area Life Cycle (TALC) proposed by Butler (1980) is the most cited within the field of tourism studies (Hall, 2006; Gibson, 2008). The TALC (Figure 3.2) portrays change in both tourism demand and supply, in stages and was initially based on the Costa Brava in Spain. Butler (1980) suggested that the pattern of visitor arrivals to a tourist area is similar to the S-shaped curve of the ‘Product Life Cycle’ in classical marketing theory. Drawing also on models of wildlife populations and Plog’s (1974) cognitive-normative tourist typology, a six-stage hypothetical evolutionary sequence was described, consisting of exploration, involvement, development, consolidation and stagnation. In the final phase of the model (now routinely termed as the post-stagnation stage, although Butler does not actually use that term), various pathways from decline to rejuvenation are proposed. The potential for rejuvenation is dependent not only on intervention and investment, but also management, which was the main argument in the original model. As noted by Butler (2004: 162), the model was ‘a commentary on the inevitability of loss of quality by destinations in the absence of management, not… the inevitability of decline regardless of intervention’ (Emphasis added).

Figure 3.2: The Tourist Area Life Cycle
Source: Modified from Butler (1980)
The TALC has been widely and frequently applied to various tourism products and environments (see Lagiewski, 2006 for a recent review). Where the TALC has been applied to individual English seaside resorts or destinations (i.e., seaside districts and regions), it has invariably been with intention of articulating their historical development and analysing the evolution of their markets (e.g., Cooper and Jackson, 1989; Agarwal, 1997a; Cooper, 1997; Thornton, 1997). These studies have shown the model to be empirically relevant and that English seaside resorts are certainly in stagnation stage, if not the post-stagnation phase of the tourist area life-cycle. Overall, two main reasons were proposed to explain the steady reduction of demand for traditional seaside holidays since the 1970s, a more thorough account of which is provided by Shaw and Williams (1997), Agarwal (2002) and Gale (2007). The most commonly cited reason for the initial decline in tourism at English seaside resorts is the development of competition (i.e., problems of demand), although their decline is also attributed to a general deterioration of quality (i.e., problems of supply).

The English seaside has faced competition ‘from overseas sun, sea and sand resorts initially in the Western, then Eastern Mediterranean, and subsequently throughout the pleasure-peripheries of the Caribbean and Latin America, southern Africa and Southeast Asia’ (Gale, 2007: 24). However, in addition to competition from ‘seaside’ tourism products and destinations abroad, the English seaside has faced competition on the home front from non-seaside destinations and products. Indeed, ‘the countryside and nowadays-rejuvenated inland cities are powerful competitors, chasing government funding, employment opportunities, education initiatives, leisure visitors, conferences and entertainment spectacles’ (Powell and Gray, 2009: 7). The proliferation of more attractive holidays elsewhere in Britain and overseas is undoubtedly an important factor, but there are other trends in tourism markets affecting resorts. The trends identified include the growth in short breaks (i.e., 1-3 nights) and day trips, shift to self-catering and ‘self-service’ generally (so employment and income lower), individualisation of tourism markets (i.e., post-Fordist tourism) and off-season holidays (Shaw and Coles, 2007; Visit England, 2010). In addition to these adverse competitive conditions, resource depletion has undermined the competitiveness of English
seaside resorts. Cooper (1997) clearly outlines the key features that mark the decline of the English seaside resort from a supply perspective, such indicators falling under the broad parameters of accommodation, employment, transport, environment and organisation. For the most part, these problems of supply are related to decades of underfunding and neglect by government (Shaw and Coles, 2007).

Returning to the TALC, the idea of resorts or destination areas passing through stages of discovery, growth and stagnation is appealing. However, this model is not without its problems, chief amongst which is that it fails to take into account changes in the demand and supply sides (i.e., the internal and external factors that influence resort evolution, as explained later). There are six other primary criticisms of the model, a more thorough account of which is provided by Haywood (1986), Getz (1992) and Agarwal (1994). The problems identified include: scepticism that the evolution of a resort can be described through a single model; criticism of the product life cycle concept; criticism of the relationships between carrying capacity and the life-cycle; difficulties with the application of the model as a forecasting tool (e.g., the spatial unit of analysis, the unit of measurement, data availability, the relevant timeframe); and, criticism of the exact shape of the curve, sequence of stages and position of turning points. Furthermore, the post-stagnation phase of the model has provoked much discussion.

Agarwal (1994, 1997a) in particular has taken a key role in this discussion and her criticisms and contributions have found support (e.g., Priestley and Mundet, 1998; Knowles and Curtis, 1999; Hovinen, 2002). She applied Butler’s (1980) model to Torbay (English Riviera, Devon) and to its resorts (i.e., Torquay, Paignton, Brixham) and found the single-product-dominated model too limited for dealing with the complexity and diversity of destination development. The application of the TALC is reasonably consistent with Butler’s (1980) model, although ‘each of the three resorts within Torbay varied greatly as regards the timing and speed of development’ (Agarwal, 1997a: 72). The crucial point, however, is that Agarwal (1997a) had difficulty in reconciling the experience of Torbay with the later stages
of the life cycle model. Butler’s model predicts stagnation possibly followed by rejuvenation (i.e., growth in tourist volumes) or decline (in tourist volumes) and eventually the end or exit from tourism. However, the investigation revealed that the deterministic nature of the model did not apply to the evolution of Torbay. ‘In all three resorts, the ‘post-stagnation’ phase is characterised by positive attempts to rejuvenate and re-orientate, in order to cater for changing market needs and expectations’ (Agarwal, 1997a: 72). Thus the on-going process of rejuvenation that was identified in Torbay did not fit the later stages of the model, which suggests that the consistent rising curve with a number of options after the stagnation stage needed rethinking in order to make it more applicable. Therefore, Agarwal (1994: 206) proposed the insertion of an ‘additional stage [between the stagnation and post-stagnation stages of the original model] in order to take into account the series of restructuring efforts [and success or otherwise, resulting in a series of peaks and troughs] that are inaugurated before decline sets in’.

However, unilinear models of resort development such as the TALC may be criticised for their simplistic treatment of the ‘local’. Again, these models assume that resorts have life cycles as different tourist types invade and establish themselves, causing other tourists to go elsewhere and resort characteristics to change (e.g., the structure and capacity of the resort’s tourism resource base and the types of tourist staying in the resort and the activities undertaken). Therefore, one problem of the TALC model is its sole focus on tourism development. Such a limited focus is inevitably going to produce only a partial understanding of the internal dynamics of resort change. It is crucial to not only analyse tourism in a place, but also the changing qualities of a tourist place. Within-resort explanations of change emphasise how one dimension of a resort affects another, and how changes made at the local level can achieve beneficial effects, or produce undesired consequences. They may include explanations relating to the changing demographic, social and economic ecologies of resorts, the extent and nature of collective action (that actors – resort authorities, political decision-makers, land owners, developers, local entrepreneurs, traders, residents, etc. – of different resorts respond differently to resort challenges and change), and public policy (including
levels of public investment and effectiveness of local services, and effectiveness of governance and political arrangements).

Unilinear models of resort development such as the TALC have also been criticised by theorists who argue that changes in resorts are the product of changes at higher spatial levels, for example, changes in economic structure. In this respect, Agarwal (2002) points to three processes associated with post-Fordism, namely the: (1) search for capital accumulation as exemplified by the growing internationalisation and arguably globalisation of the tourism industry; (2) flexibility of production made possible by new technologies; and (3) consumption changes toward preferences for more individual and bespoke forms of holiday. It is these processes, Agarwal (2002) contends, that have influenced the creation of new, and previously inaccessible and undeveloped destinations, a preference for independent and special interest holidays in non-resort environments, an increase in the popularity of rural and urban areas along with substitutes for the touristic experience, and the opportunity to customise products to a differentiated clientele. Taken together, these post-Fordist related processes have undermined the appeal of the mass packaged and standardised seaside resort holiday.

The rise and fall of destination areas is also attributed to what can be termed cultural shifts (Urry, 1990, 1997; Gale, 2005, 2007). These theorists acknowledge the role of competition from other tourism destinations and products, but argue that economic perspectives (at least in isolation) fail to ‘sufficiently interrogate changes in fashion, style and taste which have transformed [Western society] in the past few decades’ (Urry, 1997: 103). These theorists have loosely characterised such changes as ‘post-modern’. Followers of post-modernism believe that the development of, and continued growth in, the middle class, consisting of ‘occupants of managerial and professional posts working in both the private and public sectors’ (Urry, 1997: 106) has brought with it cultural and political changes. The well-travelled middle class have imposed their values and beliefs onto society. These beliefs include the veneration of culture, nature and authentic experiences (Urry, 1997). The social
diffusion of these values led to a restructuring of many social practices. Changes in ideology and taste meant the depreciation of resort infrastructure and amenities and disenchantment with the previous popular mass ‘working class’ resorts, which are no longer perceived as ‘special’ or ‘extraordinary’ (Urry, 1997; Gale, 2005). However, in the absence of empirical evidence in support of this opinion, the question arises of whether this negative profile is really valid (or too simplistic, even a myth). This criticism aside, followers of post-modernism believe changes in ideology and taste have not only produced a hierarchy of coastal tourism resorts, but also helped promote non-seaside tourism destinations, products and practices.

Thus, some theorists have played down the local and see resort change as a manifestation of much wider economic and sociocultural changes taking place in Western society. However, this approach has a serious drawback. The more structural approach designated resorts or destination areas as essentially passive spaces in which change was effected by successive rounds of capital investment or disinvestment. Put differently, ‘the circulation of capital within the global tourism system is the means by which resort development or decline takes place, as tourists and investments shift geographically over time’ (Shaw and Williams, 2004: 237). From this perspective both the variability of resort development and the potential significance of local action in influencing resort change were overlooked. In contrast, a central tenet of more recent attempts to conceptualise the restructuring of tourism space is an acknowledgement of the interactional nature of the process. Proponents of the more structural approach now locate resorts within wider urban and economic systems, emphasising not only the processes that occur at different spatial levels, but also the connections between levels. This latter approach emphasises the causal significance of local context – particularities of place, population and local governance (Agarwal, 2005). It espouses that social, economic and political conditions and actions ‘emanating from specific places will change, modify and transform the effects of global, international and national processes, resulting in specific outcomes, as well as contributing to these’ (Agarwal, 2005: 352). This re-conceptualisation of resort change draws on different
disciplinary achievements within geography, economics and sociology. It is detailed by Agarwal (2005) and summarised in Figure 3.3.

Figure 3.3: The English seaside resort in its wider context
Source: Author’s own elaboration

Thus, increasing attention has been given to the resort setting in a wider context which has started to focus research efforts into understanding the international and national, social, economic and cultural trends and processes that operate on these tourism places. This strand of work has a more explicit focus on change but a less microscopic view of the resort. Within the British context, the problem raised has specifically been that of resort decline and the restructuring of tourism. Research on restructuring has focused on the consequences of exogenous demand and supply factors, including competition from foreign holidays, changing tourism consumption patterns, economic recession and restructuring, changing travel costs and demographic trends (Clegg and Essex, 2000; Gordon and Goodall, 2000; Agarwal, 1999,
Apart from these social, economic and cultural processes, the role of the state (both at a national and local level, and the relationship between them) has also been an important factor in understanding the process of resort decline and redevelopment.

In relation to the debate on resort restructuring, Smith (2004: 19) points out that the extent to which tourism plays a role in regeneration is dependent on ‘the local authority’s degree of conviction that it is still a viable option (local authorities still tend to be responsible for the planning and management of resorts in the UK)’. Agarwal (1997b) has explored such factors in depth, her work also underlining the crucial importance of local authority commitment in determining effective/appropriate policy responses. Various local factors – including the importance attached to the maintenance and further development of tourism, the importance and degree of development of tourism, resort size and the number and function of seaside towns contained within the local administrative area – impact upon commitment levels. Agarwal (2007) also considers global-local interactions and questions the effectiveness of local government in managing the fortunes of tourism within resorts. A number of factors have been identified for the capacity of resorts to respond effectively to global forces. Factors that inhibit resort capacity include: appreciation of the problem (i.e., the nature, influence and consequences of global forces); civic commitment; shared interests and trust; strong institutional presence; high level of contact, co-operation and information exchange; and, development of mutual awareness and common cause. However, the most notable problem was the lack of co-operation and trust within and between the public and private sectors.

The reason for the lack of co-operation and trust is not clear, but Agarwal (2007: 70) questions whether the public sector is ‘helping or hindering’ resorts with its complex and fragmented institutional landscape. ‘What this now means for economic development is that decisions have to be made, and resources need to be shared across a range of public, quasi-public and non-public agents. Thus the potential for duplication, inertia and financial wastage is high’ (Agarwal, 2007: 58). A similar concern is also raised by Shaw and Coles (2007).
They found that ‘certainly at the resort level there are still many policy gaps between […] regional-based strategies and those being formulated by local authorities’ (Shaw and Coles, 2007: 54). A research priority is, therefore, to resolve these uncertainties concerning the gap between the local and the regional policy scenario, and the role of actors (including the complex network of relationships between central, regional, sub regional and local organisations) involved in the process of resort restructuring.

3.1.2 Summary

This section provided a brief overview of the development of coastal resorts in Britain and then reviewed three key approaches to studying resort development. The first approach focuses on the morphological transformation of resorts. Such studies have a long history. Works by the British geographer Gilbert during the 1930s and 1940s marked the beginning of morphological research. Studies of this kind have focused on physical features and land use patterns in specific resorts. The neglect of the socioeconomic aspects of resorts, lack of details of development processes and failure to account for touristic differentiation over larger areas, especially complete nations or global regions, has been criticism levelled at this body of work. The second approach, which has developed mainly since the 1980s following Christaller’s (1963) seminal work, focuses on investigating the process of development of destinations and the possible causes and consequences of their dynamic pattern of tourism development. A number of models and typologies have been suggested to explain development, most of which recognise the evolutionary nature of destinations. However, unilinear models of resort development such as the oft-quoted TALC have since been criticised for their simplistic treatment of the ‘local’, for their neglect of external/exogenous factors and for failing to consider the interdependencies of macro-level national and international processes of change with local socio-political systems.

Recent research has tended to develop knowledge of resort development from a predominantly structuralist perspective. This approach has the advantage of allowing a
broaden focus, not only on those structural changes that are ultimately responsible for the rise and fall of destination areas, primarily economic restructuring and cultural change (Agarwal, 2002; Gale, 2007). While emphasising the role of such trends and processes as the motors of change, this approach does not deny the importance of local context and human agency in negotiating, mediating and resisting these structural forces (Agarwal, 2005). To date, research efforts have concentrated on the consequences of exogenous demand and supply factors for English seaside resorts and the institutional capacity of resorts to respond to such change. However, resort development raises not only the question of consumption and production processes, the changing quality of coastal resort tourism and related restructuring strategies. Resorts also undergo a transformation of place quality during their development (Shaw and Williams, 2004). Changes in demographic, social and economic structure are potentially important for English seaside resorts as they impact upon their image, role and function (Agarwal, 2012). Moreover, changing structures may have different implications for different resorts, neighbourhoods and different social groups, so producing advantage and disadvantage, inclusion and exclusion. However, evidence on all these impacts is relatively sparse. Indeed, with the exception of Beatty and Fothergill (2004), Agarwal and Brunt (2005, 2006), Shaw and Coles (2007) and Agarwal (2012), there are few studies that have focused in detail on the nature of change in English seaside resorts. Therefore, much uncertainty still exists about the differing character, problems and prospects for these post-mature coastal tourism resorts.

It is crucial to make explicit a key point in the above discussion: little attention has been paid to the non-touristic dimensions of English seaside resorts. Commenting on the existing knowledge base, described as ‘superficial and general’, Agarwal (2012: 1470) concludes ‘the internal dynamics of English seaside resorts are poorly understood’. There is some evidence of recent resort change, but it is sparse. What such studies have exposed is how little is known in detail about the changing demographic, social and economic ecologies of English seaside resorts due to inadequate levels of information at the resort level. Moreover, debate has centred on the concept of resort itself, issues of space and time, and
whether relative or absolute change is most relevant to measure. Before proceeding to examine the empirical evidence on socio-economic resort change, it will be necessary to consider those conceptual issues important to an understanding of resort change.

3.2 Understanding socio-economic resort change: conceptual issues

Perhaps the most critical issue underlying the study of resort change is the concept of the ‘resort’ itself. What are resorts and what do they consist of? It is not possible to provide a precise definition of a resort because ‘a spectrum of resorts exists, ranging from those with a wholly tourist function to those where a significant amount of tourist activity occurs alongside a variety of other urban functions’ (Pearce, 1987: 167). Beyond this distinction between ‘tourist resort’ and ‘resort town’, few clear definitions have been given by academics because such tourism environments vary widely in their evolution, morphology and character (Pearce, 1987; Shaw and Williams, 2004; Prideaux, 2009). Robinson (1976: 155) suggested that resorts are

‘places, which attract large numbers of tourists and which tourism endows with special characteristics so that direct and indirect revenue produced by tourism plays a very important and even decisive role in their existence and development’.

Certainly, within a European context, the term resort predominantly describes a specific territorial form of geographical places whose reliance on tourism and smaller size and shape distinguish them, for example, from cities with diverse economies (Shaw and Williams, 2005; Prideaux, 2009). In contrast, the concept of resort is narrower in North America, where it is often viewed as being a substantial tourism facility providing highly specialised forms of production and consumption, usually self-contained and under singular management or ownership (Shaw and Williams, 2004; Prideaux, 2009). In a European context, the tourism functions of the ‘resort town’ have often evolved over a considerable period of time whereas, in a North American context, the self-contained ‘tourist resort’ has often developed in accordance with a preconceived plan (Shaw and Williams, 2004). However, it is not an either-
or situation. Resorts that have evolved over time and resorts that were planned in their entirety may be found in both Europe and North America and indeed other regions of the world.

It is not possible, given the existing state of debate, to identify a global definition of resort, nor is it probably desirable to do so. However, at the national level, it is necessary to establish a clear definition. The report of the House of Commons Select Committee on Coastal Towns brought this issue into sharp focus. It found that i) there is no standard definition of English seaside resorts and ii) government departments, local authorities and non-governmental organisations use a variety of typologies to define coastal settlements for their purposes (CLG, 2007a). The various definitions used relied on criteria such as land use, population density, economic characteristics and remoteness or location. Consequently, in the absence of a standardised definition, it is extremely difficult to compare national, regional and local coastal town research over time, and between areas. This situation has serious implications. The reality of coastal tourism resorts is heavily obscured, poorly articulated and only partially available to inform national policy and programmes. With these concerns in mind, the DCLG commissioned a report from Sheffield Hallam University to help better define seaside resorts (Fothergill, 2008).

Fothergill (2008) deliberated the attempts by researchers and policymakers to divide the existing spectrum of British coastal settlements into coherent categories, noting ‘there has been much sloppy thinking on the definition of “coastal towns”’ (Fothergill, 2008: 2) and that a ‘one size fits all’ approach is inappropriate given their diversity. Fothergill (2008: 13) thus argued that ‘socio-economic research on seaside towns needs a consistent and defensible definition of the towns’, that is to say, ‘a clear geographical definition of the towns’ (Fothergill, 2008: 4). Drawing on the Seaside Economy report (Beatty and Fothergill, 2003), Fothergill (2008) made a distinction between the settlements ‘coastal’ and ‘seaside’. It was argued that, although the report of the Select Committee on Coastal Towns has tended to use the terms interchangeably, which is misleading, coastal towns and seaside towns indicate different places. Accordingly, Fothergill (2008) divided coastal towns in three categories,
namely: seaside resorts/towns (n=37), other significant coastal towns/cities (n=18) and estuary towns/cities (n=7). They are all large settlements with populations above 10,000, but the first group features a resort function, while the second and third are principally commercial or industrial in nature.

So, on the issue of definition, Fothergill (2008) did not contribute anything new to the debate, promoting only the approach employed by Beatty and Fothergill (2003) for the *Seaside Economy* report. That report, apart from size of settlement (determined by population), did not specify any other criteria for the identification of seaside towns, despite entering into discussions with the British Resorts Association (now known as the British Resorts and Destinations Association). Consequently, it is unclear how the resorts were identified for inclusion in the *Seaside Economy* report. This criticism aside, Fothergill (2008) stated that a seaside resort implies i) concentration of tourist activities (especially in the coastal zone) and infrastructure (e.g., promenades, piers), especially holiday accommodation (e.g., hotels, boarding houses, caravan sites) and ii) specialisation in, and dependence on tourism. He concluded that the terms *seaside resort* and *seaside town* are more interchangeable as coastal towns are believed to be a wider and more diverse group than seaside resorts/towns. On the contrary, seaside resorts/towns vary in terms of size and importance, location and physical environment, and tourism (i.e., differentiation between seaside resorts in terms of scale of tourism, strategies, tourism markets served, resources, innovation and future prospects).

Tourism is fundamental, but challenges and problems extend beyond tourism alone. It should be noted at this point the DCLG commissioned not only a report from Sheffield Hallam University to help define seaside resorts (Fothergill, 2008), but also two reports from that university to better understand their socio-economic characteristics. The second (Beatty *et al.*, 2008) and third (Beatty *et al.*, 2011) reports have provided data on, respectively, the 37 seaside towns with populations above 10,000 (total pop. 2.9 million), and on 37 smaller seaside towns with population between 1,500 and 10,000 (total pop. 170,000). These
‘benchmarking’ studies provide a useful insight into the varying fortunes of different seaside towns. However, they fail to consider the diversity within towns and the urban geography of individual resorts, as have other recent discussions and comparative seaside town studies.

Thus to date, no studies have taken advantage of the small area geography developed following the 2001 census to explore in detail the differences in local circumstances amongst, between and within resorts, and the potential reasons behind any variability. Even the most economically prosperous resorts are likely to contain disadvantaged socio-spatial environments (i.e., neighbourhoods). According to Galster (2001: 2112), the concept of neighbourhood includes both geographic (i.e., place-oriented) and social (i.e., people-oriented) components, namely:

- Environmental characteristics (e.g., topographical features, pollution);
- Proximity characteristics (influenced both by location and transport infrastructure);
- Characteristics of the buildings (e.g., type, design, materials, density, repair);
- Infrastructural characteristics (e.g., roads, streetscape);
- Demographic characteristics of the population;
- The existence and quality of local services;
- Political characteristics (e.g., political networks, involvement of residents);
- Social-interactive characteristics (e.g., quantity, quality of friend and family networks);
- Sentimental characteristics (e.g., sense of identification with place, historical significance).

In order to address the problems of disadvantaged neighbourhoods, policymakers need to recognise and understand both the spatial distribution of such neighbourhoods across areas, and the nature and diversity of such neighbourhoods (Lupton and Power, 2004). Measuring, mapping and classifying disadvantaged neighbourhoods thus becomes of paramount importance. This task is particularly relevant given that arguably, seaside resorts should not be regarded as just tourism places. Resorts must be seen as an urban type and, by extension, are made up of neighbourhoods. The fortunes and condition of resorts and their respective neighbourhoods are likely to be inextricably linked. That is to say, they are very closely related and affect each other. Considering the different characteristics of neighbourhood begins to raise awareness that different aspects of resorts may be changing in different directions and at different rates. The different characteristics of neighbourhood, furthermore, reinforce the contention here that resort change relates to a multitude of different change
processes which occur at different temporal and spatial scales (see section 3.1.1 and Figure 3.3).

This discussion prompts three other, rather more practical, issues about how resort change should be measured. The first is about how seaside resorts should be spatially delineated for the purposes of analysing change. The approaches identified by Fothergill (2008) include using district-level data as a proxy for the seaside town within a district, which was adopted by government in its evidence to the Select Committee inquiry, and a ward-based definition of seaside towns, as developed by Sheffield Hallam University for the Seaside Economy report, which ‘involved fine-grain maps overlaying ward boundaries on the underlying urban geography’ (Fothergill, 2008: 5). The former approach is nonsense. Just a few of the larger resorts can be matched to district boundaries, that is to say, the vast majority of resorts are only a part of a district. A small number of resorts straddle boundaries between local authority districts. Furthermore, as Powell and Gray (2009: 8) have pointed out, ‘information based on district boundaries also creates difficulties, for example, bypassing individual seaside resorts within each authority’. Noting some of these problems and that census and other statistical data are increasingly becoming available at ward level, Fothergill (2008: 5) insists:

‘in order to take forward meaningful research a settled, ward-based definition of seaside towns needs to be adopted, and the starting point should probably be the Sheffield Hallam definition from the Seaside Economy report’.

However, it is questionable whether such an approach offers a way forward. One problem is that seaside resorts do not fit neatly with ward boundaries, as Agarwal and Brunt (2006: 660) discovered, ‘this is particularly the case with the small and medium sized resorts as sometimes the ward and resort boundaries did not directly correspond and encompassed some of the surrounding rural hinterland’. Another closely related problem is that wards can vary in terms of area and population. With regards population, ‘wards are of different sizes, averaging about 5,000 people, but ranging from 1,000 [in some rural areas] up to about 32,000 [in big cities]’ (Lupton, 2001: 5). Therefore, information based on wards that form
only a part of a resort distorts or threatens to distort, to a greater or lesser extent, the reality of seaside resorts. The call by Fothergill (2008) to employ a ward-based definition is surprising, particularly as lower-level super output areas (LSOAs) were developed by the Office for National Statistics in 2001. LSOAs are a sub-ward statistical geography averaging approximately 1,500 people and can be aggregated to form the resort with much greater accuracy. Furthermore, unlike wards, LSOAs are not subjected to regular boundary change, which can have serious implications when trying to keep track of statistics over time.

A second issue is that of the timescale over which resort change should be analysed. The importance of this question arises in relation to, for example, assertions about ‘tipping points’ beyond which ‘an area’ may become subject to a vicious circle of decline (North and Syrett, 2006). A long-term perspective, built up over several decades, will deliver an understanding of broader causes and consequences of change than a short-term view. However, while a long-term perspective is appropriate for wider change processes, such as economic restructuring (as measured, for example, by sectoral or occupational shifts over time), too long a focus is unlikely to capture important short-term processes, such as fluctuating levels of deprivation, or migration/settlement patterns of different social groups in certain resorts or neighbourhoods. Therefore, in researching resort change and social exclusion, historical factors, direction and speed of change may be important, as well as current factors. A third issue is whether relative or absolute change is most relevant to measure. It may be argued that relative change is always important, because what matters for equity purposes is the difference between resorts and neighbourhoods. That said, it may be argued that it is absolute improvements that make a difference to people’s lives. For example, it might be relevant to know what position a resort has in the housing market, not just the absolute value of prices or rents. For these reasons, absolute improvements may matter more for some indicators and relative improvements for others. With these issues in mind, the final section of this chapter summarises the existing evidence on English seaside resorts and considers the role of socio-economic resort change in local area exclusion.
3.3 Reviewing evidence of socio-economic resort change

The main conclusion from the review of the literature is that current knowledge of the directions of socio-economic resort change is very limited. In many ways, this dearth of knowledge is not surprising, given the difficulties of defining resorts and the boundary problem mentioned earlier, the multiple dimensions and attributes that comprise resort, the contemporaneous occurrence of compositional and in situ changes, and the many influences on resort change, occurring at different spatial levels. Many of the theoretical understandings derived from Agarwal’s (2005) conceptual framework for resort change have been difficult to translate into quantitative research designs. There have also been data problems, principally:

- Lack of data aggregated to resort level, whether from Census of Population, administrative sources or household surveys.

- Problems with changes in ward boundaries over time.

- Changes in indicators over time. For example, only one deprivation-related Census indicator (car access) has been consistent over all Censuses from 1971 to 2001 (Martin et al., 2002).

- Inability to track individuals (or dwellings) over time, thus making it hard to tell whether changes at the resort level have arisen because of changes to people in situ or because of movement of people.

- Inability to link census and other socio-economic data with tourism statistics for English seaside resorts which, as explained in section 3.1, is due to the dearth of tourism data relating specifically to English seaside resorts, and to the non-standard way in which tourism information is collated. As noted by Fothergill (2008: 10), ‘the absence of good information about the seaside tourist economy applies not just to its overall importance but also to trends through time and the differences between individual resorts’. Consequently, little is properly known about whether there are
more declining resorts than previously, or fewer, and whether their populations are
dwindling or growing. Again, there is no telling, given the extreme paucity of
comparable and available tourism data at resort level. Evidence is therefore drawn
from the supply side and primarily from labour market analyses of resorts (e.g., Beatty
and Fothergill, 2003, 2004). However, other analysts have used commercial property
values (Coles and Shaw, 2006; Gale, 2005) and planning application data (Clegg and
Essex, 2000) to create a picture of resort ‘health’, although such information does need
to be readily available for each individual resort, which is not always the case.

- Lack of data disaggregated to resort level. In some cases, trends at the resort level can
only be inferred from changes at higher geographical levels. For example, much of the
data on migration, migrant workers, earnings and business stock is at local authority
level, whereas data on economic output and productivity is at sub-regional level and
relate to counties or groups of unitary authorities. Thus, data on several key indicators
is only available at local authority level and above, and it is hard to be sure of trends at
the resort level.

It should be noted at this juncture that the ‘benchmarking’ studies published by the
DCLG have helped to fill the evidence gap that existed on seaside resorts. They present a
range of statistical evidence on socio-economic conditions in English seaside towns, and
compare the figures with regional and English averages. However, the statistics are becoming
dated. They provide a picture of trends from 1998/9 to 2005/6 (although only for some socio-
economic variables) but there is a clear need for more up-to-date figures. Moreover,

‘the report covers the key socio-economic issues for which data is reasonably readily
available. The report is not intended to provide a comprehensive digest of all the
statistics that might conceivably be assembled for seaside towns’ (Beatty et al., 2008:
10; Beatty et al., 2011: 8).

In summary, there has been a dearth of socio-economic data specifically relating to English
seaside resorts for many decades and where it is available the time-series is short, making a
meaningful assessment of change very difficult. The national seaside resort database
accompanying this thesis and product of the research, therefore, constitutes a significant and valuable resource (see section 1.4).

3.3.1 How resorts are changing

This section draws chiefly from the *Seaside Economy* report (Beatty and Fothergill, 2003, 2004). As mentioned earlier (see section 1.2), the only national study of the economies of seaside towns, by Beatty and Fothergill, covers the period 1971–2001. The study found, contrary to expectation, a surprising level of employment growth, with total employment increasing by about 317,000 jobs between 1971 and 2001. In contrast, levels of claimant unemployment (i.e., the numbers on Jobseeker’s Allowance) showed a relatively minor increase of only 19,000 over the same period. Employment growth had been particularly marked in the 1980s and 90s, with higher rates of job growth than the national average. However, an above-average proportion of the jobs are part time, thus leading to strong female employment growth but falling male employment.

Table 3.1 shows the change in employment by sector in seaside resorts between 1981 and 2001. It is apparent from this table that several primary industries (including shipbuilding, fishing, energy production and ports) have experienced relatively significant decline in recent decades. Thus, the seaside economy is largely characterised by service industries. Beatty and Fothergill (2003) found that 32 per cent of all jobs were in the accommodation, distribution and catering sector, and a further 26 per cent were in the public sector, thereby signalling an economy reliant on tourism and government. Both sectors recorded an increase in jobs, as did the construction sector albeit to a lesser extent, although the largest shift occurred in financial services (Shaw and Coles, 2007). Based on these findings, Beatty and Fothergill (2003: 7) conclude that:

‘Seaside towns do not on the whole suffer from a downward spiral of decline. Whilst there has clearly been restructuring in the wake of the rise of the foreign holiday, the continuing resilience of employment in and around the parts of the local economy most dependent on tourism suggests that there has often been successful adaptation. The seaside tourist industry remains one to be nurtured, not written off as a lost cause’.
However, there are many good reasons to be sceptical. For a start, the whole industry has changed, and that has resulted in less money spent by the tourists remaining in local economies. That point should be emphasised. There are an ever-increasing number of national pub, restaurant, supermarket and accommodation chains. In addition, rising car ownership has meant that visitors are not restricted to seaside resorts once they arrive there. All the time, less money from tourism stays in the local economy, and that has a big impact on average incomes. Job growth may be heating up, but low incomes depress areas as well. However, in concentrating on readily available labour market statistics, Beatty and Fothergill (2003) have totally missed that vital point. Employment is important, but economic challenges and problems extend beyond employment alone (e.g., incomes, earnings, enterprise, levels of investment and access to regeneration funds). In emphasising coastal employment growth, moreover, Beatty and Fothergill (2003) underplay the part-time, low-job quality and low-wage/skill nature of much employment. The *Seaside Economy* report may be criticised further. Beatty and Fothergill (2003) may be overstating the importance of tourism. The hotel, catering and distribution sector covers most of the tourist-related jobs, but it is also quite a lot wider, including wholesale, retail and the motor trade for instance, much of which will not depend directly on the tourist trade. Beatty and Fothergill (2003) should have isolated the

<table>
<thead>
<tr>
<th>Sector</th>
<th>Seaside towns (n= 43)</th>
<th>National</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jobs (000)</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Agriculture and fishing</td>
<td>5</td>
<td>0.3</td>
<td>2</td>
</tr>
<tr>
<td>Energy and water</td>
<td>9</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>131</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Construction</td>
<td>92</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Distribution, hotels and restaurants</td>
<td>413</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>Transport and communications</td>
<td>56</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Banking, finance and insurance</td>
<td>196</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Public administration, health, education</td>
<td>341</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>Other services</td>
<td>64</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>1,306</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Shaw and Coles (2007: 45)
tourism-related jobs, rather than relied on an all-encompassing, standard statistical category. The alternative argument to the decline thesis might then have found support.

Resort economies are facing not only structural difficulties (i.e., lack of economic diversity and reliance on a declining tourism industry), but also cyclical difficulties. The economies of seaside resorts are seasonal, peaking during the spring and summer months between April and September. Employment and economic activity peak during this period with a range of temporary and part-time jobs in tourism and other low-wage, low-skill seasonal industries like fruit picking and packaging. According to Beatty and Fothergill (2003: 13), ‘an annual cycle of claimant unemployment is still evident [for both men and women]’. They also found that, taking all seaside towns together, claimant unemployment is marginally higher than the national average. However, a number of individual towns have claimant unemployment that is unusually high by national standards. The extent of disadvantage in seaside resorts shows up more clearly in comparison with neighbouring areas – 35 of the 43 seaside towns studied have claimant unemployment rates higher than those in surrounding areas, and sometimes much higher (Beatty and Fothergill, 2003).

However, the level of unemployment is higher than it initially appears. Even though Beatty and Fothergill (2003) were able to provide employment data for seaside resorts specifically, there is hidden unemployment not captured in the figures. Indeed, the figures presented in the Seaside Economy report fail to capture the large numbers of economically inactive working age residents, including the long-term sick, the disabled and people who are looking after family or home. With regards the long-term sick, the DCLG Select Committee Inquiry obtained data from both the DWP and the Department of Trade and Industry, which suggests that between 1997 and 2006 the number of Incapacity Benefit claimants in seaside resorts increased by 12.3 per cent compared to 2.2 per cent across Britain. In 2006, 150,000 or 9.3 per cent of working age adults in seaside towns were in receipt of Incapacity Benefit (CLG, 2007a). Note that these figures are for sickness benefit and do not necessarily include
those claiming disability benefits. Nonetheless, the figures demonstrate that there is extensive joblessness in seaside towns beyond that recorded by claimant unemployment.

A further, more general finding is that the total population of seaside towns grew by 12 per cent or 340,000 between 1971 and 2001, compared to 6 per cent nationally (Beatty and Fothergill, 2003). The vast majority of the 43 seaside towns have shared in this growth, but not all to the same extent. Population growth was attributable not so much to in situ changes (i.e., natural increase, which actually appears to be negative at least for adults of working age), but rather to in-migration. There was substantial in-migration from the working age population. Between 1971 and 2001, 360,000 people of working age moved into seaside towns (equivalent to nearly one quarter of the 1971 working age population). However, the migration into seaside towns is not distributed evenly across age groups. It can be seen from the data in Table 3.2 that there was modest net in-migration amongst 16-24 year olds, notably more amongst women than men, but for 25-34 year olds there is virtually no in-migration. Each of the other age groups, up to state pension age, records substantial net in-migration. There is some evidence in the Seaside Economy report that in-migration to seaside towns is driven by residential preference. The Seaside Economy report contains a survey of 1,033 non-employed residents in four seaside towns (Blackpool, Great Yarmouth, Thanet and Southport). The survey found that a quarter of the non-employed had lived in the same town all their life. When the remaining three-quarters who had moved from elsewhere were asked to indicate reasons for moving into their present town, most of those surveyed indicated that it was not because of specific employment opportunities. Further analysis of the reasons for inward migration by duration of residence revealed subtle differences. It can be seen from the data in Table 3.3 that wanting to live by the coast and housing-related reasons were markedly more important for the ‘recent’ in-movers.
Table 3.2: Net in-migration of people of working age to seaside towns, 1971-1991

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-24</td>
<td>8,000</td>
<td>22,000</td>
</tr>
<tr>
<td>25-34</td>
<td>0</td>
<td>2,000</td>
</tr>
<tr>
<td>35-44</td>
<td>36,000</td>
<td>38,000</td>
</tr>
<tr>
<td>45-54</td>
<td>30,000</td>
<td>29,000</td>
</tr>
<tr>
<td>55-64 (m)</td>
<td>37,000</td>
<td>-</td>
</tr>
<tr>
<td>55-59 (f)</td>
<td>-</td>
<td>18,000</td>
</tr>
<tr>
<td>Total</td>
<td>110,000</td>
<td>109,000</td>
</tr>
</tbody>
</table>

Source: Beatty and Fothergill (2003: 36)

Table 3.3: Reasons for moving to the seaside, by length of time in town

<table>
<thead>
<tr>
<th></th>
<th>Recent in-movers (1998-2000) (%)</th>
<th>Older in-movers (before 1998) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wanted to live here</td>
<td>47</td>
<td>32</td>
</tr>
<tr>
<td>Family-related</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>Work-related</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>Housing-related</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>Other reasons</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

N.B. Respondents could give more than one reason

Source: Beatty and Fothergill (2003: 85)

The *Seaside Economy* report also demonstrates that the population structures of seaside resorts tend to be particularly uneven, as evidenced by the significant in-migration from the over-35 working age population. However, the DCLG (2007a) also note the inward migration of retired and semi-retired people, as have other recent discussions (Shaw and Coles, 2007), with the latter outlining their influence on resort economies. Many seaside resorts have experienced rapid rises in residential property prices that are well above the national average, ‘as migrants seek either to move permanently to seaside resorts, or purchase second homes for individual use or as investment opportunities’ (Shaw and Coles, 2007: 47). Conversely, at the younger end of the age range, school leavers and college graduates tend to leave seaside resorts because of ‘the shortage of employment opportunities, housing costs and the shortage of services and facilities for young people’ (CLG, 2007a: 17).
consequence of the out-migration of young (especially young skilled) is the lower educational attainment and entrepreneurial culture in remaining population. In summary, ‘the net impact of these individual demographic trends is to leave many seaside towns with a higher than average older population and lower proportion of their population in the first half of their working age’ (CLG, 2007a: 13).

There is, however, another dimension to the social structure of many seaside resorts. The CLG Select Committee Inquiry found evidence of the in-migration of vulnerable adults (i.e., statutorily homeless families, care-leavers, ex-offenders, adults with mental health problems, European Union migrants, asylum seekers). Although vulnerable people of working age may move to seaside resorts voluntarily, ‘they may also be placed there by other authorities to identified suitable accommodation’ (CLG, 2007a: 15). According to the British Urban Regeneration Association (BURA, 2007: 5), many seaside resorts have become ‘dumping grounds for people facing problems such as unemployment, social exclusion and substance dependency’. The CLG Select Committee report identified the growth of Houses in Multiple Occupation (HMO) as a key factor for the inward migration of vulnerable adults. An HMO is a dwelling or converted residential building which is occupied by more than one household – households share basic amenities, such as kitchen, washroom or toilet (Housing Act, 2004). The decline in the traditional bed-and-breakfast and guesthouse market has led to either the closure or reuse of many of these premises as HMO. This private sector accommodation, often in poor repair, is (relatively) cheap, and that (the argument goes) suits Housing Benefit claimants from neighbouring areas and further afield. However, there is scant reliable evidence on this point.

Thus, the *Seaside Economy* report found that seaside resorts are experiencing increases in employment and population, the latter fuelled by steady flows of in-migration. Despite these upward trends in population and employment, a range of socio-economic problems have been identified (see Table 1.3) and many coastal areas suffer from high levels of deprivation. With respect to the latter, Figure 3.4 shows the 2007 Index of Multiple
Deprivation rankings for every lower layer super output area in England. The least deprived areas are dark green and the most deprived areas are dark grey. It is apparent that high levels of deprivation are not limited to inner-city areas of England and that many coastal areas are deprived to a greater or lesser extent, with the most pressing problems in general terms in Cornwall, Devon, the East, the North East and the North West. In terms of socio-economic problems, the issues for residents of seaside resorts are economic, physical and demographic.

From an economic perspective, seaside resorts are characterised by fragile economic conditions, including an overreliance on tourism-related businesses and other service sector businesses, (un)employment problems (i.e., seasonal, part-time, low-skill, low-wage), significant shares of residents in ‘skills poverty’ (i.e., those qualified below NVQ2), low rates of economic activity and large numbers of people claiming sickness benefit (Beatty et al., 2008). However, there is considerable diversity between resorts. The benchmarking study of the 37 seaside resorts with populations above 10,000 found that, in terms of the three ‘economic’ domains (i.e., income; employment; education, skills and training) of the Indices of Deprivation 2007, four resorts appear in the least deprived quartile every time and a further six appear twice. These resorts, which might therefore be seen as having the least economic problems among England’s larger seaside resorts, are in alphabetical order in Figure 3.5. What is notable about this list is that seven of the ten best performing resorts are located along a relatively short stretch of the south coast from Exmouth to Brighton. At the other end of the spectrum, six resorts fell into the most deprived quartile in all three of the ‘economic’ domains in the Indices of Deprivation, and a further five appear twice. In all, eleven seaside resorts were identified as having the greatest economic problems (Figure 3.5). Thus, on the basis of the three economic domains in the deprivation indices, sixteen resorts neither rank among the strongest or weakest seaside economies.
Figure 3.4: Most and least deprived LSOAs in England, 2007
Source: ONS (2009: 98)

Best
Bognor Regis, Exmouth, Bournemouth, Brighton, Worthing, Sidmouth, Southport, Swanage, Whitley Bay, Whitstable/Herne Bay

Worst
Bridlington, Clacton, Great Yarmouth, Ilfracombe, Lowestoft, Morecambe/Heysham, Penzance, Skegness, Thanet, Torbay, Whitby

Figure 3.5: Economic performance – the variation between the larger seaside resorts
Source: Drawn from data contained in Beatty *et al.* (2008)
From a physical perspective, the housing market in seaside resorts is very unbalanced. There is a very large private rented sector, a proliferation of HMOs and poor housing conditions. Evidence from the English House Condition Survey reveals that, in 2001, nearly half of all stock was ‘non-decent’ (compared to 33 per cent elsewhere), 6 per cent was ‘unfit’ (compared to 4 per cent elsewhere) and 20 per cent fell into the privately rented category (twice the rate of elsewhere), with lower levels of social housing and owner occupation (CLG, 2007a). Research commissioned by CLG (Shared Intelligence, 2008) identified three key drivers which have led to this situation:

- The decline of tourism which has resulted in the reuse of hotels and guest-houses as HMOs;
- Lower than average house prices, the large size of the older properties, and the growth in the buy-to-let market have led to the conversion of houses into small units and growth of the private rented sector; and,
- The high number of rented properties and absentee landlords has fuelled the decline in the condition of the housing stock.

From a demographic perspective, as mentioned earlier, the population structures of seaside resorts tend to be particularly uneven. The key drivers of population change are: outmigration of youth for education and opportunities; the in-migration of vulnerable adults, owing to the availability of cheap rented accommodation and the placement practices of other local authorities; the in-migration of working age adults aged 35 years and older; retirement in-migration; and, an ageing population. Taken together, these demographic trends increase the strain on public services, particularly when the individuals concerned have high levels of need. Furthermore, a consequence of the in-migration of the low skilled and retired is ‘a mismatch between the affordability ratio of earnings against house prices’ (Shaw and Coles, 2007: 47). The lack of affordable housing is an issue in many seaside resorts, owing to ‘the increasing in-migration of the retired, semi-retired and second-home owners who are drawn from more affluent groups’ (Shaw and Coles, 2007: 48). Based on data compiled from the Select Committee Inquiry (CLG, 2007a), Shaw and Coles (2007) note that house prices are
above the national average in seaside resorts that are not only retirement areas, but also commuter settlements.

This section has aimed to give an overview of the main issues and trends identified in the literature as impacting at resort level. It is clear from this review that there are some key explanatory factors that may account for poor performance:

- **Decline of traditional tourist industry and failure to diversify**: many seaside resorts are over-reliant on public sector employment, the declining traditional tourism industry (i.e., domestic holiday market of 4+ nights) and other low-wage, low-skill and often seasonal sectors. The location (poor transport infrastructure, isolation and remoteness) of most seaside resorts, except for those within close commuting distance of major cities, does not make them an obvious first choice location for alternative industries (to traditional tourism) that can maintain the strength of the local economy;

- **Traditional building stock**: many seaside towns have a large stock of former holiday accommodation (old hotels, boarding houses, even caravan sites) that is highly suitable for single-resident occupancy dwellings. The presence of high levels of inactivity in these areas might, to some extent, be explained by the nature of the benefit system driving the inactive into areas with high levels of suitable housing; and,

- **High levels of in-migration**: there has been a growth in jobs in 41 of the 43 seaside towns over the period 1971-2001 (Beatty and Fothergill, 2003). However, job growth has not corresponded to increases in employment, due to in-migration by people wanting to live in seaside towns. This situation is leading to continuing imbalance in seaside labour markets.

Beatty and Fothergill (2003) found that poor economic performance (as expressed in relatively narrow terms, unemployment) was attributable not so much to local economic
factors, but rather to high in-migration. However, according to Shaw and Coles (2007: 47), ‘many of the difficulties appear to relate to patterns of migration and the low wage economy associated with many parts of the tourism sector’ (Emphasis added). While it is tempting to try to isolate which are the major drivers of change, and how much economic and social decline/change is accounted for by each of the factors, case studies of resorts show that what produces change is the interaction of factors. Work undertaken for the DCLG suggests that resort change is not the product of one factor alone but of a combination of demographic, economic, social and policy changes (Shared Intelligence, 2008). Based on the perceptions and views of regeneration and housing managers on the ground in ten seaside resorts in England (Blackpool, Bridlington, Clacton, Falmouth, Great Yarmouth, Morecambe and Heysham, Skegness, St. Ives, Thanet, Whitby), Shared Intelligence (2008) highlighted the way in which some of the before-mentioned economic, physical and demographic factors interact with and reinforce one another (see Figure 3.4). According to Shared Intelligence (2008: 13),

‘taken together, this combination of factors has created a cycle of decline. The interplay and relative importance of these factors will vary from place to place, but [the informants] highlight the lack of economic diversity as the key driver’.

Figure 3.6: Issues for residents of seaside resorts
Source: Shared Intelligence (2008: 13)
These factors – including weak labour markets, poor stock condition and housing market imbalances, high levels of population transience and in-migration – impact both on existing residents and on changing population composition. In highly disadvantaged resorts, they may well set in train a series of other mechanisms, for example, lack of inward investment, stigmatisation, poor public service provision, declining physical and social environments, diminishing social networks, poverty traps caused by a combination of long term benefit dependency and low paid work, thriving informal and illegal economies, high levels of crime and teenage pregnancy, and so on. It therefore appears that the twin challenges in understanding resort change and performance are to further understand these interactions (by studying resorts in detail and over time) and to identify patterns and combinations of circumstances that repeatedly occur, by quantitative studies incorporating all these factors.

3.3.2 Potential factors influencing social exclusion in English seaside resorts

Although it has been documented in the academic and policy literature that English seaside resorts are in decline and are exhibiting characteristics associated with social exclusion, these formerly busy destinations are an under-researched entity in geographical studies of poverty, deprivation and social exclusion. The introduction to this thesis emphasised the paucity of published research on social exclusion in English seaside resorts, noting that historically research has focused on ‘urban’ and, more recently, ‘rural’ locations. This research reveals that social exclusion is extensive in both environments, but there are some important differences in its nature and form. For example, socially excluded households in rural areas tend to be widely dispersed, whereas in inland inner-city areas they are often concentrated within social housing estates. Survey evidence suggests these estates have severe deprivation in breadth and depth, and all aspects of life are affected, including educational attainment, crime and safety, housing, jobs, skills, the environment, incomes and health. Benefit dependency is very high, employment is low (Brennan et al., 1998, 2000; Glennerster et al., 1999; Lupton, 2001). Some of the principal characteristics of rural exclusion include its invisibility, a perception that rural life is ‘problem-free’, the out-migration of younger people, a high proportion of older people and social isolation, and a high level of property ownership
which, although it accords status, often masks the existence of low incomes in particular (Chapman et al., 1998; Commins, 2004; Countryside Agency, 2000; Shucksmith and Chapman, 1998). Indeed, social exclusion in rural areas is often hidden as socially excluded people tend to live alongside extreme affluence. Low incomes, seasonality of employment and access to services and housing are issues for residents in rural areas, whereas unemployment, housing quality and poor living conditions affect many residents of inner-city areas.

Thus, academic research of social exclusion has been geographically constrained to inner-city urban areas and some rural environments, and has neglected coastal locations. This research sets out to redress this imbalance by providing a descriptive analysis of the nature, intensity and distribution of social exclusion in English seaside resorts. In doing so, it investigates whether there are different types of excluded seaside resort localities and explores the factors affecting social exclusion in English seaside resorts. In researching social exclusion in a spatial context, a key task is to think about the kinds of characteristics that areas have, and the reasons why these might be important. Theorists of local area exclusion suggest that area and neighbourhood characteristics are of two kinds:

- **Intrinsic or hard-to-change characteristics.** These include location, transport infrastructure, housing and economic base. These are usually determined by local factors and broader sub-national influences (Lupton, 2001; North and Syrett, 2006).

- **Population characteristics.** Changes in population composition are strongly linked to intrinsic characteristics, not least because ‘workers locate close to industry. People with low skills and earning capacity move into areas of lower quality, lower cost housing. New migrants tend to settle near ports or in major cities, from which some will disperse. In cities with growing economies, areas of low cost private housing close to city centres become gentrified’ (Lupton and Power, 2002: 29). Thus, population composition and dynamics are also attributed to sub-national influences, ‘mitigated by local factors such as high crime or the quality and availability of housing’ (Lupton, 2001: iv).
Table 3.4 summarises this approach to thinking about area characteristics with reference to English seaside resorts. It incorporates many of those factors identified in the previous section and gives some examples of how they may influence social exclusion. The contribution of these factors can be categorised according to whether they relate directly to the environment in which people live (i.e., place-oriented factors) or the characteristics of the seaside residents (i.e., people-oriented factors). Thus, the multifaceted phenomenon of resort change relates to the socio-economic structure (i.e., people) and ‘health’ (i.e., place) of seaside resorts. This framework provides a basis for subsequent analysis, undertaken in the methodology, to determine how the variables are represented by the available data.

Table 3.4: Understanding resort change: elements of ‘change’ and influences on social exclusion

<table>
<thead>
<tr>
<th>Type of characteristics</th>
<th>Factors/facets</th>
<th>Why important</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic or hard to change characteristics of resort</td>
<td>Geographical factors such as resort size, location and proximity</td>
<td>Influence location of companies, access to jobs and services, how attractive an area is to live in (i.e., place based area effects)</td>
</tr>
<tr>
<td></td>
<td>Economic factors such as industrial structure, economic diversity, economic activity, business stock, household income, house prices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical factors such as housing stock (type, tenure and condition) and existence of transport infrastructure</td>
<td></td>
</tr>
<tr>
<td>Population composition and dynamics</td>
<td>Compositional variables such as age, ethnicity, family size and type, occupational class of residents, health</td>
<td>Influence labour supply, household structure, service needs, social networks and norms, culture and preferences (i.e., population rooted area effects)</td>
</tr>
<tr>
<td></td>
<td>Migration such as volumes, flows and age structure of migrants, immigrant workforce</td>
<td></td>
</tr>
</tbody>
</table>

Source: Author’s own elaboration
3.4 Summary

This chapter has sought to provide a statement about what is known about socio-economic resort change in the UK at the present time. Initially, it provided an overview of the development of seaside resorts in Britain and then reviewed three key approaches to studying resort development. The purpose of that review was to show the strengths and limits of existing resort development approaches. What all these approaches have in common is that they are to do with tourism activity, neglecting the socio-economic dimensions of tourist places. Consequently, ‘the internal dynamics of English seaside resorts are poorly understood’ (Agarwal, 2012: 1470). It is this body of knowledge, which can best be described as superficial and general, this study seeks to contribute to. Specifically, this study aims to make a contribution to knowledge and understanding of the manifestation of social exclusion in English seaside resorts, and of its relationship with resort change.

Resort change is a combination of two concepts: resort and change. The former refers to the unit of study; the latter indicates the object of study. The second section of the chapter sought to understand the challenges associated with these two concepts and the consequences of these challenges for seaside resort research. It identified three key issues of debate. The first of these is that there is no clear answer emerging as to what definition of seaside is most appropriate in the English debate. The division of settlements into coastal and seaside areas is both complex and problematic, as evidenced by the fact that no single classification system has been adopted in England. Moreover, what constitutes a seaside resort remains weakly defined. Consequently, it is unclear what should be measured when measuring resort change. Drawing on the concept of neighbourhood, it was suggested that resorts are physical spaces, with intrinsic characteristics such as economic base, housing, transport and environment, which may alter over time, comprising resort change. However, given that the concept of neighbourhood also has a social component, any analysis of resort change must also include the changing characteristics of residents. The second issue is the question of how resorts should be spatially delineated for the purposes of analysing change. The ward-based definition underpinning the Seaside Economy report is questionable. It was argued that, in
order to better understand trends and challenges, seaside resort research needs to go to the smallest available statistical outputs and build upwards from them. Third, there are issues relating to the selection and interpretation of appropriate indicators for the measurement of change. In researching resort change, historical factors, direction and speed of change may be important, as well as current factors. Furthermore, both absolute and relative variables may be relevant.

The final section of the chapter examined what is currently known about socio-economic resort change and, in doing so, considered the role that such factors play in influencing local area exclusion. The main conclusion from the review of the literature is that current knowledge of the directions of resort change is very limited, principally because little data is available at the resort level, and because where it is available, the time-series is short, making a meaningful assessment of change very difficult. Such evidence as there is seems to suggest that English seaside resorts face a common and distinctive set of economic, physical and demographic problems. However, very little is known about the differing circumstances between and within resorts, and the potential reasons behind any variability. The principal factors identified through a review of the literature as being potentially important for social exclusion in seaside resorts may be categorised according to whether they relate directly to the environment in which people live (i.e., place-oriented factors) or the characteristics of the seaside residents (i.e., people-oriented factors). This framework for understanding resort socio-economic change provides a basis for subsequent analysis (undertaken in the methodology) to identify the available datasets that represent the different variables of the framework.
Chapter 4
Research Methodology

This chapter considers the how and why of the research that lies at the heart of this study. It begins by laying out the philosophical dimensions of the research, which is followed by an explanation of the three stage method adopted in this study. Each stage is then considered in turn, wherein the materials and methods employed to meet the objectives are detailed. The aims and objectives of the research were stated at the start of this thesis but they are repeated here for the benefit of the reader. The main aim of this research project is to contribute to knowledge and understanding of the manifestation of social exclusion in English seaside resorts, and of its relationship with resort change. The following model may serve as a guide to understand the structure of the empirical analyses (see Figure 4.1). Solid arrows in the model indicate relationships that will be directly studied in the analyses. Dashed lines indicate themes that have been discussed theoretically, but not studied directly empirically. The numbers on the model refer to the research objectives. This research seeks to:

1. Identify the nature and extent of social exclusion in English seaside resorts. In this respect, the research provides an account of how social exclusion differs between seaside and non-seaside areas, and how social deprivation varies within and between resorts;

2. Determine how the socio-economic performance of seaside resorts differs from that of England as a whole and provide an assessment of whether there are “true” differences in socio-economic performance between deprived and less deprived resorts. In this respect, the research seeks to ascertain the degree to which place- and population-based factors might contribute to the presence of characteristics associated with social exclusion in English seaside resorts; and

3. Investigate if there are different types of excluded seaside resort localities, and if so, whether a typology of excluded localities can be established. The typology building exercise undertaken in this thesis allows the socio-spatial structure of excluded resort
localities to be understood with reference to a broad number of factors or indicators. The third element of the research therefore provides a better understanding of some of the causes and consequences of local area exclusion, and of the variations in need between different areas.

![Research Model](image)

Figure 4.1: Research model – social exclusion in English seaside resorts

Source: Author’s own elaboration (see also Figure 3.3)

4.1 Overview of research methodology

The research methodology for this study is summarised in Table 4.1. In this study, the paradigmatic perspective adopted is that of positivism. This paradigm holds certain beliefs about the nature of reality (i.e., ontology) and knowing (i.e., epistemology). Ontologically, positivism assumes that there is a single, external and objective reality that is separate from any knowledge of it and, epistemologically, this reality can be uncovered through the application of scientific methods (Guba, 1990). Positivist methodological approaches rely heavily on quantitative methods (Creswell, 1994). Research involves data collection that is
invariably numeric and the researcher tends to use statistical and mathematical techniques as
the methodology of data analysis. Positivist research searches for patterns and regularities and
focuses on prediction and control (Creswell, 1994). The emphasis is placed on measuring
variables precisely and testing hypothesis that are linked to casual explanations. The positivist
research paradigm, therefore, entails a deductive approach to the relationship between theory
and research. It moves from the general to the specific, and its main aim is to test theory.

This research employs a non-experimental, quantitative approach in an attempt to
develop understanding of the relationship (if any) between social exclusion and resort change.
A progressive three stage approach is adopted which, as shown in Table 4.1, runs parallel to
the three research objectives. These objectives led to the use of quantitative measures and
secondary data analysis as a research method. Hakim (1982: 12) describes secondary data
analysis as:

‘any further analysis of an existing dataset which presents interpretations, conclusions
or knowledge additional to, or different from, those presented in the first report on the
enquiry as a whole and its main results’.

For social exclusion, the data in this study are primarily drawn from the Indices of
Deprivation. Regarding the examination of the influence of resort socio-economic
performance on social exclusion, it was necessary to determine how the variables (of the
framework for understanding resort socio-economic change, see Table 3.4) are represented by
the available data. This task involved reviewing datasets available at both the ward level and
LSOA level. The survey was necessary given that the benchmarking study for DCLG (Beatty
et al., 2008) did not set out to cover socio-economic and community issues in any depth. It
assessed larger seaside towns on a number of standard indicators, which have been used in
other academic work – namely the Marine Management Organisation study of coastal areas
(MMO, 2011). But these indicators do not allow for a comprehensive assessment of the
socioeconomic structure and ‘health’ of seaside resorts. Thus, a list of available secondary
data was compiled. Then, a wide range of data representing characteristics of socio-economic
structure/composition and indicators of decline was assembled from a range of data sources,
including Census of Population, Labour Force Survey, Annual Business Inquiry, Department for Work and Pensions, HM Revenue and Customs, Experian, Land Registry, Home Office, ONS, Housing Strategy Statistical Appendix etc. The data was collated for seaside resort LSOAs and wards, and matched to all identifiable ‘seaside’ resorts within each seaside district, and added to the newly created national seaside resort database. For the typological investigation of excluded seaside localities, the data compiled for resort LSOAs was used.

The data collation undertaken for this study, therefore, has been enormous. The construction of the national seaside resort database was a prime consideration from the outset. The design and construction of the database was determined by the information collected, and also by the manner in which recording of data took place. The purpose of the database was to host, first, Indices of Deprivation data for seaside and non-seaside local authority districts and LSOAs in England and, second, information relating to the themes of socio-economic performance for all identified ‘seaside’ resort wards and LSOAs, with data for the latter small area geographies being aggregated to the resort level. Thus, two main phases of data collection took place. The first phase involved the utilisation of the Indices of Deprivation database, area classification and implementation of a three step process to identify the resorts to be included in the analysis of social exclusion. Having identified seaside resorts, wards and LSOAs, the second phase of the data collection process was then initiated and involved researching the available datasets at the LSOA and ward level. Again, the purpose of the survey was to collect, first, socio-demographic data about the circumstances of people living in seaside resorts and, second, information relating to aspects of area decline. Thus, the second phase of data collection was lengthy.

The national seaside resort database was designed and created using Microsoft Excel. The database consists of seven spreadsheets, four of these relate to seaside regions, districts, wards and LSOAs, whereas the fifth relates to resorts (i.e., ward and LSOA data aggregated to resort level). The sixth sheet is a geographic look-up table, which details the LSOA names and codes, ward names and codes and postcodes for every seaside resort. The seventh sheet contains the Indices of Deprivation data for seaside and non-seaside areas. Microsoft Excel
was utilised as it is easy to use and readily available on most computers, thus allowing ease of
data-migration and accessibility. Microsoft Excel is also easily compatible with other
Microsoft applications, such as Microsoft Access, which is a relatively new tool that provides
both the functionality of a database and the programming capabilities to create end-user
screens. To anyone with basic knowledge of both Excel and Access, it will be immediately
obvious that the latter is far superior in terms of storing and manipulating large amounts of
information. Access is composed of tables, queries, forms, reports, macros and modules.
Given these functions, a project is now underway to move the data from Excel to Access, thus
enhancing the potential for future dissemination of parts of the database. Analyses of data
have been undertaken using Excel (2013) and the Statistical Package for Social Sciences
(SPSS) version 21.0 programme. The methods of analysis, as indicated in Table 4.1, are
discussed in detail in the following sections of this chapter, alongside the data to which they
relate.

Table 4.1: Summary of research methodology

<table>
<thead>
<tr>
<th>Philosophy</th>
<th>Positivism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontology</td>
<td>Objectivism</td>
</tr>
<tr>
<td>Epistemology</td>
<td>Empiricism</td>
</tr>
<tr>
<td>Approach</td>
<td>Non-experimental, quantitative, exploratory-descriptive</td>
</tr>
<tr>
<td>Design</td>
<td>Three stage method</td>
</tr>
<tr>
<td>Stage 1:</td>
<td>Examination of social exclusion in all English ‘seaside’ resorts</td>
</tr>
<tr>
<td>Stage 2:</td>
<td>Examination of the influence of resort socio-economic performance on social exclusion</td>
</tr>
<tr>
<td>Stage 3:</td>
<td>Typological investigation of excluded resort localities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method and data</th>
<th>Construction of a national seaside resort database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1:</td>
<td>Indices of Deprivation</td>
</tr>
<tr>
<td>Stage 2:</td>
<td>Datasets available at the LSOA and ward level</td>
</tr>
<tr>
<td>Stage 3:</td>
<td>Datasets available at the LSOA level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Secondary data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1:</td>
<td>A combination of univariate and bivariate analyses (i.e., chi-square and Pearson’s correlation analyses)</td>
</tr>
<tr>
<td>Stage 2:</td>
<td>A combination of univariate and bivariate analyses (i.e., t-tests)</td>
</tr>
<tr>
<td>Stage 3:</td>
<td>Multivariate analysis (i.e., principal components analysis, cluster analysis) and bivariate analyses (i.e., one-way analysis of variance and chi-square analysis).</td>
</tr>
</tbody>
</table>

Source: Author’s own work
4.2 Examination of social exclusion in English ‘seaside’ resorts

‘Social exclusion’ is universally regarded in the academic and policy literature as involving multi-dimensional disadvantage. It is important to note, however, that there is no generally accepted definition of social exclusion and so there is no universally agreed mix of indicators. Indeed, a chief characteristic of social exclusion studies to date has been the variation in indicators employed in constructing a composite measure of the concept (see Levitas et al., 2007 for a review). Previous area-based studies of social exclusion have used various indicators from a range of data sources such as administrative sources, ONS and the Census of Population. Such variation serves to exemplify the absence of a generally approved approach to the concept and measurement of social exclusion.

This study draws principally on the Index of Multiple Deprivation (IMD). The IMD was considered the most suitable vehicle through which to examine the occurrence, nature and extent of social exclusion in English seaside resorts for four main reasons. First, it covers a range of different and related aspects of deprivation that together are indicative of social exclusion. Second, it is based on a robust, transparent methodology. Third, although the data are not available at a resort level, it is possible to collate and apply the LSOA level data to resorts. Fourth, it is easily accessible and understandable. Thus, the IMD was adopted for both pragmatic and conceptual reasons. This section first provides an overview of the IMD and its construction. It will then go on to describe the process used by the study to identify the seaside resorts to be included in the analysis. Then, the analysis strategy is detailed.

4.2.1 Data source

The IMD forms part of a package of indices – the English Indices of Deprivation – produced by the Department of Social Policy and Intervention at the University of Oxford, on behalf of the DCLG. A detailed document describing the purpose, methodology and sources for construction of the indices is available for download from the DCLG website (McLennan
et al., 2011). According to the DCLG, the IMD and its component indices are the main mechanisms used in government to distinguish between small areas for the purposes of analysing area change, monitoring performance, setting targets and allocating funding (McLennan et al., 2011). The IMD is based on the premise that multiple deprivation consists of individual components which can be measured separately, but also combined to form an overall single index measure. Each of the component domains of deprivation is comprised of a number of indicators which cover aspects of this deprivation as comprehensively as possible. Based on these indicators, every LSOA in England is then given a score. The scores in each domain are standardised, and each domain is weighted. The DCLG note that the weights applied were the result of a combination of analysis of the data, expert opinion and consultation (McLennan et al., 2011). These weighted scores are combined to give a composite score (or index value) for each LSOA. As shown in Figure 4.2, the IMD is a composite score based on 38 indicators grouped across seven domains. Each domain’s contribution to the overall score is weighted differently, with income and employment deprivation weighted the most. Income and employment deprivation make up 45% of the IMD between them. Once domain scores have been established for each area the individual areas are ranked. Areas are ranked for each domain and for the combined IMD measure according to their position relative to all others in the country. There are 32,482 LSOAs in England; the LSOA with a rank of 1 is the most deprived and 32,482 the least deprived.
Figure 4.2: Index of Multiple Deprivation – indicators, domains and relative weighting (out of 100)

Source: Compiled from McLennan et al. (2011)
A number of summary measures which describe differences in the IMD between local authority districts are also available. These measures are:

- **Average of LSOA scores** which describes the district as a whole, taking into account the full range of LSOA scores across a district. It is the population weighted average of the combined scores for LSOAs in each district and takes into account that the more deprived LSOAs may have more extreme scores.

- **Average of LSOA ranks** which summarises the overall measure of deprivation across the district taken as a whole, including both deprived and less deprived LSOAs. It is the population weighted average of the combined ranks for the LSOAs in a district.

- **Extent** which shows how widespread *high levels* of deprivation are in a district and is the proportion of a district’s population living in the most deprived LSOAs in the country. It only includes districts containing LSOAs which fall within the most deprived 30% of LSOAs in England.

- **Local concentration** which identifies *hot spots* of deprivation within a district. It is the population weighted average of the ranks of the district's most deprived LSOAs that capture exactly 10% of the district's population (which may not always capture a whole number of LSOAs).

- **Scale (2 measures)** which captures the number of people experiencing (1) income and (2) employment deprivation at district level.

No single summary measure is favoured over another as there is no best way of describing or comparing districts. There are less local authority districts in the 2010 indices \((n = 326)\) than there were in 2007 and 2004 \((n = 354)\) due to local government reorganisation in 2009, which resulted in the formation of a number of single, or unitary, authorities. For each measure, the district is given a rank. Again, when considering ranks, low numbers are always worse than high ones.
The Indices of Deprivation were first published at ward level in 2000, then at the smaller LSOA level in 2004, 2007 and 2010. Thus, the latter three versions measure pockets of deprivation more accurately than the Indices of Deprivation 2000. A second improvement is that the Indices of Deprivation 2004, 2007 and 2010 include two additional domains of deprivation: ‘crime’ and ‘living environment’. Given that the Indices of Deprivation which relate to 2004, 2007 and 2010 are based on the same approach, structure and methodology, comparison between the indices is possible. The data in this study are primarily drawn from the Indices of Deprivation 2010, although the previous two versions are also referred to. An important point to note here is that there is typically a two year time lag between the publication of deprivation indices and the period covered by the data which comprise those indices. Thus, the most recent Indices of Deprivation typically rely on 2008 data, which should be taken into consideration when interpreting the results.

There are, however, a number of other limitations to be aware of when using the Indices of Deprivation to analyse areas. For a start, the indicators identify areas with characteristics associated with deprivation – not deprived people. It follows that not all people living in areas classified as ‘deprived’ necessarily reflect the characteristics of the area they live in. Making an erroneous assumption in this regard is known as an ‘ecological fallacy’ and is more likely when larger spatial units of analysis are used. Therefore, this study mainly uses data at the LSOA level but reference is also made to local authority districts. Another important point is that the Indices of Deprivation provide a good overview of relative patterns of deprivation in England but they do not, on their own, allow absolute statements about the level of deprivation within individual areas. For example, it is not possible to say that LSOA X, ranked 20 is twice as deprived as LSOA Y, which is ranked 40. However, it is possible to say that X is more deprived than Y. Furthermore, care must also be exercised over the interpretation of indices. The Income domain, for instance, does not measure income. Its main inputs are measures of the number of people on particular benefits in each area (and so assumed deprivation in terms of income). It follows that the indices is not a measure of affluence. Low levels of income deprivation do not necessarily mean an area is affluent.
Finally, as well as questioning the suitability of indicators to summarise deprivation, it is also important to remember that not all deprivation indices are weighted equal, as shown in Figure 4.2. Income deprivation and employment deprivation are weighted the most, resulting in an increased IMD score for income and employment deprived LSOAs relative to less-deprived ones. It follows that the pattern of multiple deprivation – or social exclusion – across England might appear different if the weights applied to combine the scores from each of the domains were balanced or less biased. However, despite such difficulties, the IMD remains the most appropriate composite multi-dimensional measure available for investigation of the multifaceted problem of social exclusion. Thus, having described the data source used to indicate the occurrence, nature and extent of social exclusion characteristics in English seaside resorts, it is next necessary to explain how the seaside resorts were identified for inclusion in the study.

4.2.2 Identification of seaside resorts – criteria and methods

There is no standard definition of England’s seaside resorts. An empirical investigation therefore needs a working definition to be constructed. This study has defined a seaside resort as any sizeable coastal settlement in which tourism is a significant source of economic activity and whose visitor product is primarily linked to the seaside. To capture the economic activity element (in the absence of data at a resort level), only settlements within ‘seaside’ districts were considered. Specifically, settlements within ‘seaside’ districts were deemed a resort if they met all of the following inclusion criteria:

(i) Settlements must be adjacent to the sea;
(ii) Settlements must have a beach; and,
(iii) Settlements must have a population above 10,000 in the 2001 Census.

There were two stages to the process of identification. The first consisted of identifying ‘seaside’ districts, which involved classifying the local authority districts of England. Pre-2009 local authority boundaries (from 2001) were used in this study since some
local authority districts were merged in the 2009 local government reorganisation, influencing local geographies in the North East, the West Midlands and the South West. Thus, this study has defined seaside resorts using pre-2009 local authority boundaries, when the number of authorities was greater and boundaries were drawn more tightly around resorts in the North East and the South West. Based simply on proximity to the coast, the 354 local authority districts of England were sub-divided into two categories: ‘coastal’ and ‘inland’. A total of 84 districts were classified as ‘coastal’ and these districts were subject to further area classification in order to enable a distinction to be made between those districts that are ‘seaside’ as opposed to ‘coastal’. ‘Seaside’ reflected tourism as an important form of employment (i.e., above average levels of employment in tourism-related businesses).

The available data on employment is rooted in the Standard Industrial Classification (SIC), which is based on industry group activity. An important point to note here is that, as argued in section 3.3.1, the share of employment in the hotel, catering and distribution sector does not adequately reflect the importance of tourism (because it is too broad). However, there is no defined set of tourism industries, with several having been used for institutional or statistical purposes. In this study, the definition of ‘tourism-related industries’ is that adopted by the ONS in ‘Labour Market Trends’, namely SIC groups 551 to 554, 633 and 925 to 927. It includes, for example, employee jobs in hotels, restaurants, bars, libraries, attractions, sport and other recreation activities. Thus, the ONS approach results in a much narrower definition of tourism given that its calculation excludes employment in other service industries (i.e., wholesale, retail, the motor trade) of the hotel, catering and distribution sector. The figures, based upon data from the Annual Business Inquiry (ABI) published by the ONS, were assembled from the National On-line Manpower Information System (NOMIS) website, which provides labour market profiles for local authority districts in England.

So, ‘seaside’ reflected tourism as an important form of employment, that is, 8.2% or above employed in tourism-related businesses according to the ABI (2001). ‘Coastal’ districts that recorded tourism-related employment below this national average had more diverse economies. Of the 84 local authority districts initially classified as coastal, 24 were re-
classified as ‘coastal’ because they appeared to be less reliant on tourism and 60 as ‘seaside’. (However, as indicated in Figure 4.3, not all these ‘seaside’ districts contained places with resort status. Of the 60 districts classified as ‘seaside’, 39 contained resorts and 21 did not. These districts are termed, respectively, ‘seaside with resort’ and ‘seaside without resort’. The location of the districts is shown in Figure 4.4.)

Having identified the ‘seaside’ districts \((n = 60)\), the second stage of the identification process was then initiated and involved applying the criteria to the settlements located within those districts. The first step involved creating a list of all places along the coast in each ‘seaside’ district. This list was informed by careful scrutiny of Ordnance Survey maps. As a second step, each place was checked to establish whether a beach is a dominant feature. This exercise relied upon information sourced from both the UK Coast Guide website (2010) and the beaches and coastline section of the Enjoy England website (2010). Having identified places along the coast with a beach, attention then turned toward establishing the population of each place.

As Census 2001 data does not correspond directly to seaside resorts, but instead to local authority, ward and output geographies, a ward-based definition was initially adopted to enable the population of each place to be established. Essentially, there are two types of ward in England – electoral wards and census wards. Electoral wards change their boundaries over time, as populations and local areas change. Census wards, however, provide a fixed geographical area. Consequently, census wards are useful for comparison of data over time. It is for this reason, and because LSOAs are nested within the boundaries of census wards, Census Area Statistics (CAS) wards were examined. Thus, for each ‘seaside’ district, the codes and names of all CAS wards were exported from the ONS Ward History Database (2009). CAS wards within the 60 ‘seaside’ districts were examined by a visual study of Ordnance Survey maps, local authority internet sites and resort brochures to ascertain which wards formed part of, or wholly encompassed, the underlying urban geography of each place in question. Population figures were then assembled from the Neighbourhood Statistics
website, allowing for the status of settlements to be established and, consequently, settlements excluded from, or included in, the study.

The boundaries of the resorts, defined by CAS wards, were also matched to LSOAs to enable the use of data compiled at LSOA level. Identifying the names and codes of the LSOAs within each CAS ward involved extracting the information from ‘Output Area Look-up Tables’, which are available from the ONS website. Again, the respective population figures were sourced from the Neighbourhood Statistics website. Then, each seaside resort was defined using its constituent LSOAs. All LSOAs within each CAS ward that covered less than half of the urban geography were excluded and the population figures revised. In all, 58 individual seaside resorts were identified as a result of this process (see Table 4.2) and they are the basis of the subsequent analysis in this study. Figure 4.5 shows how the seaside resorts are distributed around the coastline. They are listed in Table 4.3, ranked by their total resident population (of constituent LSOAs) in 2001. With a population of above 10,000, all the resorts included here qualify as ‘urban’ settlements on official criteria (ONS, 2001). Thus, the population threshold meant the inclusion of all the major seaside resorts.

In summary, this study identified 58 seaside resorts through the use of the newly created specific seaside resort definition, together with the local authority district area classification and small area geography. Indeed, each seaside resort has been defined in terms of the resident population of constituent LSOAs, which involved fine-grain maps overlaying LSOA boundaries on the underlying urban geography. This approach is much superior to the ‘subjective judgement’ and ward-based definition of seaside towns \((n = 37\) with a population of more than 10,000) developed by Sheffield Hallam University for the Seaside Economy report (Beatty and Fothergill, 2004: 463). The approach of this study is also an improvement on that deployed in Agarwal and Brunt (2006). They used a district classification similar in principle to this study, but only differentiated between coastal and seaside districts (failing to recognise ‘seaside with resort’ and ‘seaside without resort’ districts). Moreover, like Beatty and Fothergill (2004), Agarwal and Brunt (2006) also matched ward and resort boundaries. They identified 32 ‘seaside’ districts and 87 seaside resorts, but did not name all these resorts.
or specify in which districts they are located. Another deficiency is that Agarwal and Brunt (2006: 662) claim to have investigated deprivation by resort size, but provide little evidence of this analysis, including how the 87 resorts were split in the analysis.

Within this study analysis is undertaken for the 58 largest seaside resorts split between the 25 larger seaside resorts and 33 mid-sized seaside resorts. This split has been determined based on the resident population of the LSOAs which comprise the seaside resorts. While the use of thresholds of population size can be arbitrary in its division of settlements of different sizes, that proposed by ONS (2001) has attained widespread acceptance and is adopted here. As indicated above, urban settlements are defined as those with population of more than 10,000 in 2001. However, ONS has proposed a classification of urban settlements according to the amount of population they contain. As shown in Table 4.4, the core of the classification is a four-fold grouping of areas. With a population ranging from 10,124 to 163,351, the resorts fall into the ‘larger market town’ and ‘other urban’ categories. Therefore, it was felt that the threshold figure of above 39,999 was appropriate to determine ‘large’ seaside resorts. Thus, using the 2001 census population figures at LSOA level, the ‘large’ resorts are those resorts with a population more than or equal to 40,000; the ‘mid-sized’ resorts are defined as those which have a population between 10,000 and 39,999.

Figure 4.3: The area classification of local authority districts

Source: Author’s own work
Figure 4.4: The location of ‘coastal’ and ‘seaside’ districts, England, 2001

Source: Author’s own work
Table 4.2: Identifying seaside resorts

<table>
<thead>
<tr>
<th>Region</th>
<th>All coastal local authority districts</th>
<th>%</th>
<th>>8.2</th>
<th>Resorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>South West</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isles of Scilly</td>
<td>30.7 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Somerset</td>
<td>24.9 S</td>
<td></td>
<td></td>
<td>Minehead</td>
</tr>
<tr>
<td>Penwith</td>
<td>20.6 S</td>
<td></td>
<td></td>
<td>Penzance</td>
</tr>
<tr>
<td>Restormel</td>
<td>19.7 S</td>
<td></td>
<td></td>
<td>Newquay</td>
</tr>
<tr>
<td>Weymouth & Portland</td>
<td>17.3 S</td>
<td></td>
<td></td>
<td>Weymouth</td>
</tr>
<tr>
<td>Torbay</td>
<td>16.7 S</td>
<td></td>
<td></td>
<td>Torquay Paignton Brixham</td>
</tr>
<tr>
<td>Purbeck</td>
<td>14.8 S</td>
<td></td>
<td></td>
<td>Swanage</td>
</tr>
<tr>
<td>North Cornwall</td>
<td>14.2 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Devon</td>
<td>13.7 S</td>
<td></td>
<td></td>
<td>Ilfracombe</td>
</tr>
<tr>
<td>Caradon</td>
<td>13.4 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Devon</td>
<td>12.9 S</td>
<td></td>
<td></td>
<td>Exmouth Sidmouth</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>12 S</td>
<td></td>
<td></td>
<td>Bournemouth</td>
</tr>
<tr>
<td>Teignbridge</td>
<td>12 S</td>
<td></td>
<td></td>
<td>Teignmouth Dawlish</td>
</tr>
<tr>
<td>South Hams</td>
<td>11.8 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torridge</td>
<td>11.6 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrick</td>
<td>10.5 S</td>
<td></td>
<td></td>
<td>Falmouth</td>
</tr>
<tr>
<td>Christchurch</td>
<td>10.4 S</td>
<td></td>
<td></td>
<td>Christchurch</td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>9.8 S</td>
<td></td>
<td></td>
<td>Burnham-on-Sea</td>
</tr>
<tr>
<td>West Dorset</td>
<td>9.1 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerrier</td>
<td>8.5 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Somerset</td>
<td>8.3 S</td>
<td></td>
<td></td>
<td>Weston-s-Mare Clevedon</td>
</tr>
<tr>
<td>Plymouth</td>
<td>8 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poole</td>
<td>7.7 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South East</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>15 S</td>
<td></td>
<td></td>
<td>Ryde</td>
</tr>
<tr>
<td>Rother</td>
<td>13.1 S</td>
<td></td>
<td></td>
<td>Bexhill-on-Sea</td>
</tr>
<tr>
<td>New Forest</td>
<td>12.8 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>11.9 S</td>
<td></td>
<td></td>
<td>Brighton Hove</td>
</tr>
<tr>
<td>Shepway</td>
<td>11.6 S</td>
<td></td>
<td></td>
<td>Folkestone Hythe</td>
</tr>
<tr>
<td>Arun</td>
<td>10.8 S</td>
<td></td>
<td></td>
<td>Littlehampton Bognor Regis</td>
</tr>
<tr>
<td>Wealden</td>
<td>10.4 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbourne</td>
<td>10.3 S</td>
<td></td>
<td></td>
<td>Eastbourne</td>
</tr>
<tr>
<td>Chichester</td>
<td>10 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portsmouth</td>
<td>9.5 S</td>
<td></td>
<td></td>
<td>Southsea</td>
</tr>
<tr>
<td>Canterbury</td>
<td>8.9 S</td>
<td></td>
<td></td>
<td>Herne Bay Whitstable</td>
</tr>
<tr>
<td>Dover</td>
<td>8.9 S</td>
<td></td>
<td></td>
<td>Deal Dover</td>
</tr>
<tr>
<td>Thanet</td>
<td>8.9 S</td>
<td></td>
<td></td>
<td>Margate Ramsgate Broadstairs</td>
</tr>
<tr>
<td>Gosport</td>
<td>8.4 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hastings</td>
<td>8.4 S</td>
<td></td>
<td></td>
<td>Hastings</td>
</tr>
<tr>
<td>Havant</td>
<td>8.2 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swale</td>
<td>7.4 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewes</td>
<td>7.2 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medway</td>
<td>7 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worthing</td>
<td>7 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Temperature</td>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adur</td>
<td>6.2</td>
<td>East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fareham</td>
<td>5.5</td>
<td>East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>15.4</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Norfolk</td>
<td>13.1</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waveney</td>
<td>11.1</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tendring</td>
<td>10.5</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowestoft</td>
<td></td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maldon</td>
<td>10.2</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clacton-on-Sea</td>
<td></td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suffolk Coastal</td>
<td>9.7</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rochford</td>
<td>9.2</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>8.9</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>King’s Lynn & West Norfolk</td>
<td>8.4</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thurrock</td>
<td>7</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castle Point</td>
<td>7</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Lindsey</td>
<td>16.1</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston</td>
<td>5.6</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Holland</td>
<td>4.4</td>
<td>East Midlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scarborough</td>
<td>18.9</td>
<td>Yorkshire & the Humber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitby</td>
<td></td>
<td>Yorkshire & the Humber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Riding of Yorkshire</td>
<td>7.7</td>
<td>Yorkshire & the Humber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N.E. Lincolnshire</td>
<td>7.2</td>
<td>Yorkshire & the Humber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berwick-upon-Tweed</td>
<td>19.2</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berwick</td>
<td></td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnwick</td>
<td>17.7</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castle Morpeth</td>
<td>9.9</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Tyneside</td>
<td>9.3</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Shields</td>
<td></td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartlepool</td>
<td>8.3</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Tyneside</td>
<td>8.2</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blyth Valley</td>
<td>7.9</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redcar & Cleveland</td>
<td>7.8</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wansbeck</td>
<td>7.4</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunderland</td>
<td>6.6</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easington</td>
<td>5.9</td>
<td>North East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Lakeland</td>
<td>20</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackpool</td>
<td>16.4</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allerdale</td>
<td>12.7</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lancaster</td>
<td>10.4</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morecambe</td>
<td></td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heysham</td>
<td></td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyre</td>
<td>9.9</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thornton-Cleveleys Fleetwood</td>
<td></td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sefton</td>
<td>9.5</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southport</td>
<td></td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosby</td>
<td></td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formby</td>
<td></td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fylde</td>
<td>9.1</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lytham St Annes</td>
<td></td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirral</td>
<td>8.6</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Brighton</td>
<td></td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoylake</td>
<td></td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Kirby</td>
<td></td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copeland</td>
<td>7.8</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrow-in-Furness</td>
<td>7.4</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Lancashire</td>
<td>6.5</td>
<td>North West</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued overleaf
<table>
<thead>
<tr>
<th>Region</th>
<th>n=C</th>
<th>%</th>
<th>n=S</th>
<th>n=R</th>
</tr>
</thead>
<tbody>
<tr>
<td>South West</td>
<td>23</td>
<td>9</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>South East</td>
<td>22</td>
<td>8.2</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>East</td>
<td>11</td>
<td>7.7</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>North East</td>
<td>11</td>
<td>8.4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>North West</td>
<td>11</td>
<td>8.2</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>East Midlands</td>
<td>3</td>
<td>7.6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Yorkshire & the Humber</td>
<td>3</td>
<td>7.7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>England</td>
<td>84</td>
<td>8.2</td>
<td>60</td>
<td>58</td>
</tr>
</tbody>
</table>

Notes:

C = all coastal local authority districts (as opposed to inland).
S = all seaside local authority districts (as opposed to coastal).
% = Number of tourism-related jobs as a proportion of total employee jobs. Tourism-related includes the following sectors:
- Hotels;
- Camping sites and other provision of short-stay accommodation;
- Restaurants;
- Bars;
- Activities of tour operators, travel organisers and travel agencies;
- Library, archives, museums and other cultural activities;
- Sporting activities; and
- Other recreational and entertainment activities.

Employee jobs exclude self-employed, government-supported trainees and HM Forces.

8.2 = The national average for employment in tourism-related businesses (ABI, 2001)
R = Settlements granted resort status

Source: Author’s own work
Figure 4.5: Location of England’s seaside resorts

Source: Author’s own work
Table 4.3: Population of England’s seaside resorts, 2001

<table>
<thead>
<tr>
<th>Resort</th>
<th>District</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bournemouth</td>
<td>Bournemouth</td>
<td>163,351</td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>Southend-on-Sea</td>
<td>160,257</td>
</tr>
<tr>
<td>Brighton</td>
<td>Brighton & Hove</td>
<td>155,587</td>
</tr>
<tr>
<td>Blackpool</td>
<td>Blackpool</td>
<td>142,283</td>
</tr>
<tr>
<td>Hove</td>
<td>Brighton & Hove</td>
<td>92,230</td>
</tr>
<tr>
<td>Southport</td>
<td>Sefton</td>
<td>90,336</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>Eastbourne</td>
<td>89,667</td>
</tr>
<tr>
<td>Hastings</td>
<td>Hastings</td>
<td>85,029</td>
</tr>
<tr>
<td>South Shields</td>
<td>South Tyneside</td>
<td>81,583</td>
</tr>
<tr>
<td>Weston-s-mare</td>
<td>North Somerset</td>
<td>71,758</td>
</tr>
<tr>
<td>Torquay</td>
<td>Torbay</td>
<td>63,998</td>
</tr>
<tr>
<td>Lowestoft</td>
<td>Waveney</td>
<td>61,999</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>Great Yarmouth</td>
<td>54,153</td>
</tr>
<tr>
<td>Clacton-on-Sea</td>
<td>Tendring</td>
<td>51,284</td>
</tr>
<tr>
<td>Weymouth</td>
<td>Weymouth & Portland</td>
<td>50,868</td>
</tr>
<tr>
<td>Southsea</td>
<td>Portsmouth</td>
<td>50,346</td>
</tr>
<tr>
<td>Scarborough</td>
<td>Scarborough</td>
<td>50,135</td>
</tr>
<tr>
<td>Paignton</td>
<td>Torbay</td>
<td>48,251</td>
</tr>
<tr>
<td>Crosby</td>
<td>Sefton</td>
<td>48,119</td>
</tr>
<tr>
<td>Folkestone</td>
<td>Shepway</td>
<td>45,064</td>
</tr>
<tr>
<td>Christchurch</td>
<td>Christchurch</td>
<td>44,325</td>
</tr>
<tr>
<td>Lytham St Annes</td>
<td>Fylde</td>
<td>41,327</td>
</tr>
<tr>
<td>Bexhill-on-Sea</td>
<td>Rother</td>
<td>40,495</td>
</tr>
<tr>
<td>Margate</td>
<td>Thanet</td>
<td>40,386</td>
</tr>
<tr>
<td>Ramsgate</td>
<td>Thanet</td>
<td>40,339</td>
</tr>
<tr>
<td>Herne Bay</td>
<td>Canterbury</td>
<td>35,188</td>
</tr>
<tr>
<td>Exmouth</td>
<td>East Devon</td>
<td>32,972</td>
</tr>
<tr>
<td>Morecambe</td>
<td>Lancaster</td>
<td>32,091</td>
</tr>
<tr>
<td>Thornton-Cleveleys</td>
<td>Wyre</td>
<td>31,157</td>
</tr>
<tr>
<td>Whitstable</td>
<td>Canterbury</td>
<td>30,979</td>
</tr>
<tr>
<td>Deal</td>
<td>Dover</td>
<td>28,768</td>
</tr>
<tr>
<td>Dover</td>
<td>Dover</td>
<td>28,156</td>
</tr>
<tr>
<td>Fleetwood</td>
<td>Wyre</td>
<td>26,841</td>
</tr>
<tr>
<td>Littlehampton</td>
<td>Arun</td>
<td>25,593</td>
</tr>
<tr>
<td>Formby</td>
<td>Sefton</td>
<td>24,996</td>
</tr>
<tr>
<td>Broadstairs</td>
<td>Thanet</td>
<td>24,370</td>
</tr>
<tr>
<td>Ryde</td>
<td>Isle of Wight</td>
<td>23,788</td>
</tr>
<tr>
<td>Bognor Regis</td>
<td>Arun</td>
<td>22,555</td>
</tr>
<tr>
<td>Clevedon</td>
<td>North Somerset</td>
<td>21,957</td>
</tr>
<tr>
<td>Newquay</td>
<td>Restormel</td>
<td>21,953</td>
</tr>
<tr>
<td>Penzance</td>
<td>Penwith</td>
<td>21,168</td>
</tr>
<tr>
<td>Falmouth</td>
<td>Carrick</td>
<td>20,775</td>
</tr>
<tr>
<td>Skegness</td>
<td>East Lindsey</td>
<td>18,910</td>
</tr>
<tr>
<td>Burnham-on-Sea</td>
<td>Sedgeemoor</td>
<td>18,401</td>
</tr>
<tr>
<td>Brixham</td>
<td>Torbay</td>
<td>17,457</td>
</tr>
<tr>
<td>Heysham</td>
<td>Lancaster</td>
<td>16,136</td>
</tr>
<tr>
<td>Hoylake</td>
<td>Wirral</td>
<td>15,662</td>
</tr>
<tr>
<td>West Kirby</td>
<td>Wirral</td>
<td>15,548</td>
</tr>
<tr>
<td>New Brighton</td>
<td>Wirral</td>
<td>14,450</td>
</tr>
<tr>
<td>Teignmouth</td>
<td>Teignbridge</td>
<td>14,413</td>
</tr>
<tr>
<td>Hythe</td>
<td>Shepway</td>
<td>14,403</td>
</tr>
<tr>
<td>Whitby</td>
<td>Scarborough</td>
<td>13,594</td>
</tr>
<tr>
<td>Sidmouth</td>
<td>East Devon</td>
<td>13,135</td>
</tr>
<tr>
<td>Dawlish</td>
<td>Teignbridge</td>
<td>12,819</td>
</tr>
<tr>
<td>Minehead</td>
<td>West Somerset</td>
<td>11,699</td>
</tr>
<tr>
<td>Berwick</td>
<td>Berwick-upon-Tweed</td>
<td>10,882</td>
</tr>
<tr>
<td>Ilfracombe</td>
<td>North Devon</td>
<td>10,840</td>
</tr>
<tr>
<td>Swanage</td>
<td>Purbeck</td>
<td>10,124</td>
</tr>
<tr>
<td>Seaside resorts</td>
<td></td>
<td>2,544,017</td>
</tr>
</tbody>
</table>

Source: Author’s own calculations based on Census of Pop. 2001
Table 4.4: The urban classification of areas

<table>
<thead>
<tr>
<th>Categories</th>
<th>Population range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larger Market Town</td>
<td>an urban area with between 10,000 and 39,999 population in 2001</td>
</tr>
<tr>
<td>Other Urban</td>
<td>an urban area with between 40,000 and 249,999 population in 2001</td>
</tr>
<tr>
<td>Large Urban</td>
<td>an urban area with between 250,000 and 749,999 population in 2001</td>
</tr>
<tr>
<td>Major Urban</td>
<td>an urban area with population above 750,000 in 2001</td>
</tr>
</tbody>
</table>

Source: Modified from ONS (2001)

4.2.3 Analysis strategy

One objective of this study is to identify the nature and extent of social exclusion in English seaside resorts. In order to achieve this objective, the research was conducted in three stages. The process of the work and the tasks of each stage are detailed in this section. Due to the fact that the IMD data are not collected for seaside resorts specifically, the research began at the local authority district level.

Stage 1: District-level analysis

Task: To establish the factual basis regarding whether local authority districts classified in this study as ‘seaside with resort’ differ from other district types, or from the general situation in England, with regard to a range of measures of deprivation.

Process: There were two phases to the district-level analysis. The first phase involved analysis of the local authority district level indicators of multiple deprivation. The six summary measures for districts in each area classification category (see Figure 4.3) were recoded into national quartiles based on their rankings calculated in the respective Indices of Deprivation databases (see Table 4.5) and cross-tabulations and Pearson chi-square analyses were undertaken to ascertain whether there are “true” differences in the incidence and level of multiple deprivation between the types of districts. In the second phase of the district-level analysis, data at LSOA level is used to examine how different types of districts perform on the IMD and its constituent domains. To enable comparison between the indices, it was
necessary to use pre-2009 local authority boundaries. LSOAs were matched to their respective districts and grouped using the area classification of district. The LSOAs within each district type were then recoded into national quartiles based on their rankings calculated in the respective Indices of Deprivation databases (see Table 4.6) and, in a similar fashion to the previous district-level analysis, a combination of univariate and bivariate analyses illuminates the differential incidence of deprivation. But the second phase also examined the distribution of LSOAs by district classification and IMD deprivation decile, thus providing a more precise picture of deprivation. Deciles are created by ranking all LSOAs from most to least deprived and then dividing into ten groups, each containing an equal number of LSOAs (see Table 4.7). For instance, decile number one is England’s most deprived 10 per cent of LSOAs. Decile number two contains the LSOAs falling in the range of 10–20 per cent worst, and so on. The tenth decile represents England’s 10 per cent least deprived LSOAs.

Table 4.5: National deprivation quartiles for local authority districts

<table>
<thead>
<tr>
<th>Quartiles</th>
<th>ID 2004, 07</th>
<th>ID 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 Most deprived</td>
<td>1-88</td>
<td>1-81</td>
</tr>
<tr>
<td>Q2 Above average</td>
<td>89-177</td>
<td>82-163</td>
</tr>
<tr>
<td>Q3 Below average</td>
<td>178-266</td>
<td>164-245</td>
</tr>
<tr>
<td>Q4 Least deprived</td>
<td>267-354</td>
<td>246-326</td>
</tr>
</tbody>
</table>

Note: Quartiles were applied as they provide a good robust general overview of deprivation variation. As quartile groupings are broader they are less subject to minor change, making them a reliable comparator over time. However, as there are less local authorities in the 2010 index than there were in 2007/04 due to the formation of unitary authorities in 2009, no meaningful time series analysis of the district measures of deprivation could be undertaken.

Source: Author’s own work

Table 4.6: National deprivation quartiles for LSOAs

<table>
<thead>
<tr>
<th>Quartiles</th>
<th>ID 2004, 07, 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 Most deprived</td>
<td>1-8120</td>
</tr>
<tr>
<td>Q2 Above average</td>
<td>8,121-16,241</td>
</tr>
<tr>
<td>Q3 Below average</td>
<td>16,242-24,362</td>
</tr>
<tr>
<td>Q4 Least deprived</td>
<td>24,363-32,482</td>
</tr>
</tbody>
</table>

Source: Author’s own work
Table 4.7: National deprivation deciles for LSOAs

<table>
<thead>
<tr>
<th>Deciles</th>
<th>ID 2004, 07, 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 Most deprived</td>
<td>1-3,248</td>
</tr>
<tr>
<td>D2</td>
<td>3,249-6,496</td>
</tr>
<tr>
<td>D3</td>
<td>6,497-9,744</td>
</tr>
<tr>
<td>D4</td>
<td>9,745-12,992</td>
</tr>
<tr>
<td>D5</td>
<td>12,993-16,240</td>
</tr>
<tr>
<td>D6</td>
<td>16,241-19,488</td>
</tr>
<tr>
<td>D7</td>
<td>19,489-22,736</td>
</tr>
<tr>
<td>D8</td>
<td>22,737-25,984</td>
</tr>
<tr>
<td>D9</td>
<td>25,985-29,232</td>
</tr>
<tr>
<td>D10 Least deprived</td>
<td>29,233-32,482</td>
</tr>
</tbody>
</table>

Note: Unlike quartiles, deciles provide more detailed analysis. However, decile groupings are more sensitive to small fluctuations in deprivation and should be interpreted with some caution; they will show more of the short term fluctuations in deprivation as well as the longer term trends shown by quartiles.

Source: Author’s own work

Stage 2: LSOA-level analysis

Task: To establish the extent to which characteristics associated with social exclusion occur within seaside resorts and to ascertain the nature and severity of these characteristics.

Process: In order to establish the extent to which characteristics associated with social exclusion occur within seaside resorts, all LSOAs within each ‘seaside with resort’ district were categorised as ‘resort’ or ‘other’ depending on their correspondence with identifiable resort areas. The ‘resort’ and ‘other’ LSOAs were then recoded into national quartiles based on their rankings calculated in the respective Indices of Deprivation databases and cross-tabulations and chi-square analyses were undertaken so that their association with deprivation may be ascertained. This work also provided the basis for subsequent univariate analysis to identify, first, the overall distribution of deprivation for the resorts and how this compares with England and, second, the type and level of deprivation that resort LSOAs appear to be experiencing. Then, in order to establish the extent to which multiple deprivation is associated with other aspects of deprivation in seaside resorts, a series of scatterplots of the ‘resort’
LSOAs were produced. A scatterplot visually represents the correspondence between two variables – in this instance the overall IMD rank and the individual domain ranks. Each scatterplot reports a value ‘r’ (also called a ‘correlation co-efficient’), which indicates whether there is a relationship and, if so, whether the relationship is positive or negative. Thus, the results of the correlational analysis shed light on the character of multiple deprivation in English seaside resorts.

Stage 3: Resort-level analysis

Task: To provide an account of how multiple deprivation varies between and within seaside resorts.

Process: There were three phases to the resort-level analysis. Initially, there was further investigation of the nature and severity of multiple deprivation within the 58 seaside resorts through the manipulation and analysis of data produced at the LSOA level. Univariate statistical analysis was used to ascertain, first, the number of resorts with at least one LSOA in the upper quartile and, second, the number of component domains on which each resort LSOA ranks within the most deprived 25% of LSOAs nationally. This work provided a basis for subsequent analysis to identify the seaside resorts experiencing particular problems of multiple deprivation.

The second set of analyses examined the distribution and characteristics of multiple deprivation and how these vary by resort size. In order to establish whether there is a relationship between the size of the resort and the incidence and level of multiple deprivation, the LSOAs initially classified as ‘resort’ were reclassified as either ‘large’ or ‘medium’ resort LSOAs. The LSOAs in each classification category were then recoded into national quartiles based on their rankings calculated in the respective Indices of Deprivation databases, and cross-tabulations and Pearson chi-square analyses against all of the ‘large’ and ‘medium’ resort LSOAs were undertaken so that their association with deprivation may be ascertained.
Data analysis continued by investigating whether there were differences in the nature of multiple deprivation between the larger and mid-sized resorts. In this analysis, the correlation coefficients between the overall IMD rank and the individual domain ranks for the ‘large’ and ‘medium’ resort LSOAs were examined.

In the third and final phase of the analysis, the variation in multiple deprivation between and within the seaside resorts was explored. As a first step, in order to ascertain whether the levels of multiple deprivation were similar between the resorts, the overall IMD measure was applied in national quintiles at the LSOA level for the 25 larger seaside resorts and the 33 mid-sized seaside resorts separately. A quintile contains one fifth the total number of LSOAs; there are five quintiles in total: most deprived, above average deprivation, average, below average deprivation, and least deprived. The reason for adopting this approach is because the DCLG and many analyses of discrete places (i.e., towns and cities) use the most deprived 20% of LSOAs as a cut-off, as areas that fall in the top 20% most deprived in the country are able to access grants and funding from government and other organisations (McLennan et al., 2011). Based on the quintile distribution of LSOAs, the seaside resorts were compared with England as a whole and to each other, to establish whether there are any differences in the levels of multiple deprivation.

As a second step, in order to provide further insight into the differences in the levels of multiple deprivation between the resorts, the median LSOA rank for each of the seaside resorts was calculated. The median rank is a better measure than the average (i.e., arithmetic mean) rank which can be distorted by extreme values. This measure, however, does not take account of the difference in population size between LSOAs in each resort. Consequently, it only provides indicative data on resort level deprivation. Thus, the average LSOA rank for each of the seaside resorts was calculated following the methodology used by the DCLG when calculating the ranks for local authorities. The average ranking of each resort is a population-weighted average of the ranking of each constituent LSOA. The proportion of the population for a resort within an LSOA is multiplied by the rank of that LSOA and then the
results are added together for all LSOAs in that resort. The above methodology was also applied to calculate the average rank for England. The purpose of calculating this average was to assess, first, how the resorts fare on the individual deprivation domains and compare with England as a whole and, second, the variation in the nature of deprivation within and between resorts. The latter involved ranking the resorts by the average LSOA rank for each deprivation domain and overall IMD. Then, in order to illuminate differences in the patterns of deprivation between the resorts, the incidence of the deprivation measures was plotted in a series of radar charts for the 25 larger seaside resorts and 33 mid-sized seaside resorts.

4.3 Examination of the influence of resort socio-economic performance on social exclusion

Having identified the nature and extent of social exclusion in English seaside resorts, the next objective was to ascertain the influence of resort socio-economic performance on social exclusion. The main task was therefore to try to identify one or more indicators that can represent each of the factors/facets of the framework outlined in the previous chapter (see Table 3.4). Again, based on the framework for understanding resort socio-economic change, this study is using two main types of indicators of resort fortunes. The first type measures features of the area that impinge on the fortunes of residents and also influence population mix (e.g., economic factors such as industrial structure, physical factors such as housing stock). The second type of indicator is that of population composition and dynamics. Population characteristics are important because of their determining influence on labour supply, household structure, service needs, social networks and norms, culture and preferences. It follows that the list of indicators for inclusion in the analysis ended up being substantial – with 67 indicators included.

As with any use of data for the purpose of measuring the socio-economic composition of a population and/or health of a place, it can only be a general indicator. No measure is perfect and ‘data availability often has to determine what is included’ (Lupton et al., 2011: 29). Indeed, data availability at both the LSOA level and the ward level is far more limited.
than for districts. In some cases, the data available is a good match for the characteristics described in the literature. For example, DWP publishes data on benefit claimants at the LSOA level and therefore it is possible to include a range of good quality indicators on worklessness/benefit dependency. In other cases, the indicators chosen are a proxy or ‘closest fit’ for the characteristic. For example, limited robust data on health is available at LSOA and ward level and therefore Incapacity Benefit/Severe Disability Allowance and Disability Living Allowance/Attendance Allowance claimant rates have been used as a proxy for poor health. In a small number of cases (e.g., social networks, lack of civil society, stigma, fear of crime, migrant workers, earnings, business stock), relevant data is not available at LSOA and ward level and therefore it has not been possible to suggest indicators to represent these characteristics.

Table 4.8 outlines the indicators that have been included in the analysis. The rationale for including each indicator is given in Table 4.9. As can be seen from Table 4.8, datasets that are available on an annual basis (and for 2010) have been prioritised over those that are published less frequently (because the deprived and less-deprived seaside resorts were identified using the IMD 2010). That is not to say that the decennial Census has no value. On the contrary, it remains the most valuable and comprehensive data set available for investigations of the multidimensional concept of social exclusion. This point is exemplified by reference to the work of Levitas et al. (2007). They reviewed the literature, including previous studies of area-based deprivation, and provided a list of 64 Census-based variables from which to select indicators to investigate the multifaceted problem of social exclusion. Although the relevant Census data available for LSOAs and wards was collated for, and matched to, identifiable ‘seaside’ resorts within each ‘seaside’ district, and added to the newly created specific seaside resort database, only a fraction of the Census data is used in this analysis because other (non-Census) data was available for the year 2010. The research used data from the 2001 Census, which was unavoidable because of the absence of disaggregated 2011 Census data at the time of undertaking the analysis. (Data from the 2011 Census at
LSOA and ward level was released in batches at different times. ONS released the first batch of disaggregated Census data into the public domain at the beginning of February 2013.

Thus, data was collated for those LSOAs and wards previously identified in the study as comprising a seaside resort. The data were then aggregated to produce means for the 58 seaside resorts, including the 33 less deprived seaside resorts and 25 most deprived resorts. The most deprived resorts were identified during the resort level analysis of social exclusion. These resorts had higher levels of multiple deprivation than might be expected, in terms of the proportion of LSOAs falling within the most deprived national quintile. Again, this measure was chosen as it has been used within government and more widely to analyse patterns of deprivation, to identify areas that would benefit from special initiatives or programmes and as a tool to determine eligibility for specific funding streams (McLennan et al., 2011). The analyses of data begin by examining the levels of socio-economic performance experienced by seaside resorts compared with England as a whole. It went on to investigate whether there were differences between deprived and less deprived resorts, including whether the place- and population-based variables tend to operate as resort advantages or disadvantages and whether they have a large or significant effect. Unrelated t-tests were used to determine if the mean values of the variables were different for deprived and less-deprived resorts. The appropriate effect size metric for a t test is Cohen’s d, which indicates whether or not the difference between two groups’ means is large enough to have practical meaning, whether or not it is statistically significant. Due to the fact that Cohen’s d is not available in SPSS, it was necessary to calculate the value of d based on the following formula: $d = 2t/\sqrt{\text{degrees of freedom}}$. A number of textbooks cite the work of Cohen (1988) in their guide to effect sizes: below 0.2 as ‘very small’, 0.2-0.49 as ‘small’, 0.5-0.79 as ‘moderate’, and 0.8 or above as ‘large’. It is widely acknowledged that effect sizes of 0.5 or above are meaningful on a practical level.
Table 4.8: Summary list of indicators of resort socio-economic performance

<table>
<thead>
<tr>
<th>Measures of area factors</th>
<th>Factors/facets</th>
<th>Indicator</th>
<th>Source</th>
<th>Date</th>
<th>Geography</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Industrial structure</td>
<td>% pop. aged 16+ in employment, working in primary industries</td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% pop. aged 16+ in employment, working in secondary industries</td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% pop. aged 16+ in employment, working in tertiary industries</td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>Economic diversity</td>
<td>% pop. aged 16+ in employment, working in public sector</td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% pop. aged 16+ in employment, working in distribution, hotels and restaurants</td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% pop. aged 16+ in employment, working in tourism-related jobs</td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>Location quotient for public sector</td>
<td></td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Location quotient for distribution, hotels and restaurants sector</td>
<td></td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Employment rate</td>
<td>% of pop. aged 16+ in employment</td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Employment base</td>
<td>% of all employee jobs that are full-time</td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of all employee jobs that are part-time</td>
<td>Annual Business Inquiry / ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>Enterprise</td>
<td>% of working age pop. self-employed</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>Prosperity and wealth</td>
<td>Median gross annual household income</td>
<td>Experian</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>Housing – prices</td>
<td>Mean house prices</td>
<td>Land Registry</td>
<td>2010</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Housing – tenure</td>
<td>% of all occupied household spaces owned</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of all occupied household spaces rented privately</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of all occupied household spaces rented from council/social</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>Housing – condition</td>
<td>% of households lacking/sharing bath/shower or inside toilet</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of households with no central heating</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of households living in overcrowded conditions</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>Housing – unoccupied</td>
<td>% of household spaces vacant</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>Community safety</td>
<td>Total recorded crimes per 1,000 residents</td>
<td>Home Office</td>
<td>2010</td>
<td>W</td>
</tr>
</tbody>
</table>

Source: Author’s own work

See overleaf for measures of population composition
<table>
<thead>
<tr>
<th>Factors/facets</th>
<th>Indicator</th>
<th>Source</th>
<th>Date</th>
<th>L & W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Median age of population</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td>Age structure</td>
<td>% pop. children</td>
<td>ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>% pop. working age</td>
<td>ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>% pop. pensionable age</td>
<td>ONS</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td></td>
<td>% pop. retired</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>% pop. white</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td>Household</td>
<td>% of households single person</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td>Household</td>
<td>% of households single pensioner</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td>Household</td>
<td>% of households lone parent with dependent children</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td>Household</td>
<td>% of dependent children in lone parent families</td>
<td>HMRC</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>Occupational</td>
<td>% of working age pop. in employment, classified as professionals, white collar workers</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td>Poverty and</td>
<td>% of dependent children receiving child tax-credit in out-of-work families</td>
<td>HMRC</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>low income</td>
<td>% of working age pop. claiming Income Support</td>
<td>DWP</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>Poverty and</td>
<td>% of older people receiving Pension Credit Guarantee Element</td>
<td>DWP</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>low income</td>
<td>% of working age pop. claiming Out-of-Work benefits</td>
<td>DWP</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>Worklessness</td>
<td>% of working age pop. claiming Job Seekers Allowance (JSA)</td>
<td>DWP</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>Worklessness</td>
<td>% of working age pop. claiming JSA for over 6 months</td>
<td>DWP</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>Worklessness</td>
<td>% of working age pop. claiming JSA for over 12 months</td>
<td>DWP</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>Worklessness</td>
<td>JSA claimants (aged 18-24 years) as % of working age pop.</td>
<td>DWP</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>Worklessness</td>
<td>% of working age pop. claiming Incapacity Benefit/Severe Disability Allowance</td>
<td>DWP</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>Worklessness</td>
<td>% of working age pop. claiming Employment and Support Allowance</td>
<td>DWP</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>Worklessness</td>
<td>% of working age pop. claiming Disability Living Allowance</td>
<td>DWP</td>
<td>2010</td>
<td>L & W</td>
</tr>
<tr>
<td>Education and</td>
<td>% of working age pop. with no qualifications</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td>skills</td>
<td>% of working age pop. with higher education (i.e., level 4/5 qualifications)</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td>Connectivity</td>
<td>% of households without access to a car or van</td>
<td>Census / ONS</td>
<td>2001</td>
<td>L & W</td>
</tr>
<tr>
<td>Migration</td>
<td>Inflow rate, total and by broad age group</td>
<td>Census / ONS</td>
<td>2001</td>
<td>W</td>
</tr>
<tr>
<td>Migration</td>
<td>Outflow rate, total and by age broad age group</td>
<td>Census / ONS</td>
<td>2001</td>
<td>W</td>
</tr>
<tr>
<td>Migration</td>
<td>Net flow rate, total and by age broad age group</td>
<td>Census / ONS</td>
<td>2001</td>
<td>W</td>
</tr>
</tbody>
</table>

Note: L = data available at the LSOA level, W = data available at the ward level

Source: Author’s own work
Table 4.9: Rationale for use of indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>% pop. aged 16+ in employment, working in primary industries</td>
<td>Measure of type of employment (where primary industries = agriculture, forestry, fisheries and mining).</td>
</tr>
<tr>
<td>% pop. aged 16+ in employment, working in secondary industries</td>
<td>As above (where secondary industries = manufacturing, construction, energy and water).</td>
</tr>
<tr>
<td>% pop. aged 16+ in employment, working in tertiary industries</td>
<td>As above (where tertiary industries = transport and communications, banking/finance, public sector, distribution, hotels and catering)</td>
</tr>
<tr>
<td>% pop. aged 16+ in employment, working in public sector</td>
<td>Resident exposure to a growing sector / counter-cyclical</td>
</tr>
<tr>
<td>% pop. aged 16+ in employment, working in distribution, hotels and restaurants</td>
<td>Resident workforce exposure to a growing sector / seasonal employment</td>
</tr>
<tr>
<td>Location quotient for public sector</td>
<td>Sectors which have both high LQ typically form an area’s economic base. Less resilient to change, low value sectors often have inherent structural problems (e.g., seasonal employment) which are themselves constraints to growth.</td>
</tr>
<tr>
<td>Location quotient for distribution, hotels and restaurants sector</td>
<td>As above.</td>
</tr>
<tr>
<td>Location quotient for tourism jobs</td>
<td>As above.</td>
</tr>
<tr>
<td>% of all employee jobs that are full-time</td>
<td>Full-time employment may be considered a prerequisite for quality employment. Measure of job quality.</td>
</tr>
<tr>
<td>% of all employee jobs that are part-time</td>
<td>There are two possible interpretations of high part-time work: that it reflects individual choice and a range of opportunities available to people to domestic and other preferences; or that it reflects a lack of opportunities for full-time work.</td>
</tr>
<tr>
<td>% of working age pop. self-employed</td>
<td>A high proportion of self-employment in a labour market may be an indicator of a dynamic labour market with a strong entrepreneurial culture and a high rate of new firm generation. (Although this may also indicate insecure employment in some areas).</td>
</tr>
<tr>
<td>Median gross annual household income</td>
<td>Measure of prosperity, wealth and material well-being of an area.</td>
</tr>
<tr>
<td>Mean house prices</td>
<td>Measure of how attractive an area is to live in (i.e., ‘quality of a place’), where high prices equal better well-being. This is because high prices normally reflect the quality of an area, for example, transport links, schools, greenspace, safety.</td>
</tr>
<tr>
<td>% of all occupied household spaces owned</td>
<td>While home ownership levels may indicate economic security, it is also likely to indicate how transient a population is.</td>
</tr>
<tr>
<td>Measure</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>% of all occupied household spaces rented privately</td>
<td>This is a contextual indicator of households with limited means, mobility and reduced responsibility. People living in privately rented tenure include those who can't afford to become owner occupiers, students and those who choose to live a mobile lifestyle for personal or professional reasons. The occupier has freedom from the responsibility to maintain and invest in the property.</td>
</tr>
<tr>
<td>% of all occupied household spaces rented from council/social</td>
<td>This is a contextual indicator of households with high need, vulnerability and limited means. Social housing is allocated according to need. The criteria is different for every local authority but can include homelessness, overcrowding, medical or welfare issues, financial circumstances and number of dependents.</td>
</tr>
<tr>
<td>% of households lacking/sharing bath/shower or inside toilet</td>
<td>The conditions in which people live affect their health, relations between household members, and the development of children.</td>
</tr>
<tr>
<td>% of households with no central heating</td>
<td>The conditions in which people live affect their health, relations between household members, and the development of children.</td>
</tr>
<tr>
<td>% of households living in overcrowded conditions</td>
<td>Lack of housing availability can manifest itself in overcrowding, homelessness and rough sleeping. Overcrowding almost invariably occurs in households with large numbers of children. It is associated with a higher rate of child accidents and the resulting lack of privacy can be a considerable cause of mental stress.</td>
</tr>
<tr>
<td>% of household spaces vacant</td>
<td>Empty homes may be an indicator of low housing demand and the decline of particular neighbourhoods.</td>
</tr>
<tr>
<td>Crime rate</td>
<td>This is an indicator of how safe and secure people are in the places where they live and work. Measure of community safety.</td>
</tr>
</tbody>
</table>

Source: Author’s own work

See overleaf for measures of population composition.
<table>
<thead>
<tr>
<th>Indicator</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age of population</td>
<td>Age can impact both on the nature of goods and services demanded and their delivery.</td>
</tr>
<tr>
<td>% pop. children</td>
<td>This is a contextual indicator of child dependents. The under 16-age group may require specific services to be tailored to meet the unique needs of children and young people. Some children become vulnerable and may be under increased risk in places where greater poverty and social inequalities exist.</td>
</tr>
<tr>
<td>% pop. working age</td>
<td>Scale of local area labour force</td>
</tr>
<tr>
<td>% pop. pensionable age</td>
<td>This is a contextual indicator of older people. The over 65-age group may require specific services to be tailored to meet the unique needs of vulnerable older people. Older people within this age group are more likely to be at risk of ill health, loneliness and fraud. They may be more reliant on others for their health, social care, transport and accessibility needs. Older people may be at increased risk in places where poverty and high crime rates exist.</td>
</tr>
<tr>
<td>% pop. retired</td>
<td>As above. While retirees may make significant contributions to their communities and the economy, they also demand quality-of-life services, such as leisure and healthcare, and they have an impact on the resort through, say, increased development to cater for their needs, tastes, preferences etc.</td>
</tr>
<tr>
<td>% pop. white</td>
<td>Relates to ethnic composition / diversity.</td>
</tr>
<tr>
<td>% of households single person</td>
<td>Single person households are both more likely to be poor and more likely to be rich than the average – implications for poverty and inequality. Living costs are often higher for single person households. People living alone can face greater isolation and worse health and mental health. Single person households are more vulnerable to crime.</td>
</tr>
<tr>
<td>% of households single pensioner</td>
<td>This is a contextual indicator of vulnerable older people. Single pensioners are vulnerable to distraction burglary, fraud, fire, ill health, loneliness and isolation. Single pensioners will have specific needs that need to be met to mitigate against these vulnerabilities.</td>
</tr>
<tr>
<td>% of households lone parent with dependent children</td>
<td>This is a contextual indicator of vulnerable families with reduced means. In order to bring up children as a lone parent and secure an income additional support is often needed. Lone parents with dependent children tend to be at particular risk from poverty, unemployment and health inequalities.</td>
</tr>
<tr>
<td>% of dependent children in lone parent families</td>
<td>Measure of strength of families.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>% of working age pop. in employment, classified as managers, professionals and white collar workers</td>
<td>Measure of ‘knowledge workers’. Higher social classes may be more likely to be involved in local area.</td>
</tr>
<tr>
<td>% of working age pop. in employment, classified as manual workers</td>
<td>Lower social classes may be less likely to be involved in local area.</td>
</tr>
<tr>
<td>% of dependent children receiving child tax-credit in out-of-work families</td>
<td>Measure of children’s economic stability and family role models</td>
</tr>
<tr>
<td>% of working age pop. claiming Income Support</td>
<td>Measure of economic security</td>
</tr>
<tr>
<td>% of older people receiving Pension Credit Guarantee Element</td>
<td>Measure of economic security</td>
</tr>
<tr>
<td>% of working age pop. claiming Out-of-Work benefits</td>
<td>This is an indicator of worklessness and benefit dependency. People on out of work benefits are not able to generate enough income to support themselves and are dependent on their benefits for their income security.</td>
</tr>
<tr>
<td>% of working age pop. claiming Job Seekers Allowance (JSA)</td>
<td>Measure of unemployment</td>
</tr>
<tr>
<td>% of working age pop. claiming JSA for over 6 months</td>
<td>Measure of long-term unemployment</td>
</tr>
<tr>
<td>% of working age pop. claiming JSA for over 12 months</td>
<td>Measure of long-term unemployment. It is thought that those who have been out of employment the longest are least likely to possess the skills and experience that employers are seeking.</td>
</tr>
<tr>
<td>JSA claimants (aged 18-24 years) as % of working age pop.</td>
<td>Measure of youth unemployment</td>
</tr>
<tr>
<td>% of working age pop. claiming Incapacity Benefit/Severe Disability Allowance</td>
<td>Measure of health of population</td>
</tr>
<tr>
<td>% of working age pop. claiming Employment and Support Allowance</td>
<td>Measure of health of population</td>
</tr>
<tr>
<td>% of working age pop. claiming Disability Living Allowance</td>
<td>Measure of disability. Scale of working age pop. that has care and/or mobility needs as a result of a mental or physical disability.</td>
</tr>
<tr>
<td>% of working age pop. with no qualifications</td>
<td>Job opportunities for resident labour depend on skills and qualifications. The level of qualification held by people of working age in the population provides an indication of the quality of labour supply. It can be surmised that a healthy labour market is one with a high proportion of the workforce qualified to a high level. The converse is also true, in the sense that a healthy labour market would have fewer people with lower level qualification or no qualification at all.</td>
</tr>
<tr>
<td>% of working age pop. with higher education (i.e., level 4/5 qualifications)</td>
<td>See above. Also, a measure of ‘knowledge workers’.</td>
</tr>
<tr>
<td>% of households without access to a car or van</td>
<td>This is a contextual indicator of mobility. Households with no car are reliant on public transport, cycling and walking to get about and access key services or dependent on services coming to them.</td>
</tr>
<tr>
<td>Migration, total and by broad age group</td>
<td>Measure of in-migration, outmigration and net flow. Rate is the flow count as % of number of residents at the 2001 Census.</td>
</tr>
</tbody>
</table>

Source: Author’s own work
4.4 Typological investigation of excluded seaside resort localities

Having identified the nature and extent of social exclusion in English seaside resorts and investigated the influence of resort socio-economic performance, the final objective was to establish whether there are different types of excluded seaside resort localities. Cluster analysis was employed as the mechanism for achieving this objective. Cluster analysis is a statistical technique which groups cases (in this study, deprived areas) so that the cases within a group are similar to each other, but different to those in other groups. As such, it can be a useful tool in helping understand the nature of particular groups which can in turn enable better targeting. In the context of deprived areas, cluster analysis can help understand which deprived areas are similar to each other (and why). This improved understanding should enable better approaches to regeneration to be developed. The approach taken to developing a typology of excluded resort localities is described in this section. First, however, an important decision is required: how to define the excluded localities to be included in the analysis?

4.4.1 Defining excluded localities

As the objective is to establish whether there are different types of excluded resort localities, it is important to start by determining which areas should be included in the analysis. The geography chosen must represent a meaningful definition of ‘local area’ in terms of deprivation and the potential for regeneration. Taking the lead from DCLG (2008) Transforming Places; Changing Lives, deprivation is best identified using the smallest geographical units available. The smaller the geographies used, the less likely pockets or neighbourhoods of deprivation are ‘hidden’. Therefore, it was decided to use LSOA areas for the analysis. The reasons for adopting this spatial unit include: (1) the IMD is available at LSOA level; (2) LSOAs are the smallest geographical unit at which population, employment and benefits data is available; (3) LSOAs can be easily grouped to form larger neighbourhoods, estates or areas where appropriate; and, (4) compared to other small area geographies such as electoral wards, they are stable (i.e., not subject to administrative changes) and have a uniformity of size.
Having selected the most appropriate spatial unit of analysis, the next task was to identify excluded resort localities. Here, the research opted to make use of the most recent IMD. Thus, the ‘resort’ LSOAs were cross-tabulated with the overall IMD 2010. While a upper quartile threshold (i.e., resort LSOAs in England’s most deprived 25 per cent) was initially envisaged as the point in the national IMD rankings above which resort LSOAs would be classed as ‘excluded’, the research eventually opted for a upper quintile threshold, partly to focus the study on the most disadvantaged places and partly because, as noted earlier, DCLG and other organisations use the most deprived 20% of LSOAs as a cut-off, for example, when assessing applications to access regeneration funds. The results obtained from the examination of social exclusion in all English seaside resorts facilitates this stage of the work by allowing the identification of excluded resort localities. This section is not the place to set out the results, except to say that there are 1,686 resort LSOAs and of these LSOAs, 399 were in the worst performing 20% of LSOAs in England on the IMD 2010. Thus, 24% of all resort LSOAs were included in the analysis.

4.4.2 Producing the typology

This section provides an account of the development of a classification designed to provide greater insight into the different circumstances of excluded resort localities. The statistical and mathematical processes used in the classification process are well established and have been widely applied to many different types of situation in the social sciences (see Lupton et al., 2011 for a review of place typologies). The description of these processes can be simplified (although it is difficult to remove the technical jargon entirely) and set out in terms of the following steps:

(1) The selection of variables;
(2) The preparation of variables;
(3) Finding patterns of variation in the data;
(4) Scoring excluded resort localities on the dimensions of variation; and,
(5) Grouping the localities according to their scores on the main dimensions in the data.
Step 1: The selection of variables

The first step was to decide which variables should be included in the cluster analysis, that is, what characteristics of the excluded resort localities should be explored for similarity/difference. As the framework for understanding resort socio-economic change highlighted, the causes and consequences of local area exclusion are complex and therefore a wide range of characteristics are important to consider. It follows that the list of indicators for inclusion in the analysis ended up being substantial – with 50 indicators proposed (under two main headings: measures of area factors, measures of population composition and dynamics). Table 4.8 presents the variables included in the analysis, and a brief explanation of each variable is set out in Table 4.9. When inspecting Table 4.8 and 4.9, it should be noted that only datasets available at the LSOA level were used in this analysis (because the excluded resort localities are themselves LSOAs). As a result, ward-level data characterising migration and several measures of area factors (i.e., location quotient for sectors, mean house prices, crime rate) were not included in the analysis. Unfortunately, migration and house price data is not available at the LSOA level and therefore it has not been possible to suggest indicators to represent these characteristics. But it was possible to represent crime (using the crime rank measure provided by the IMD 2010, see Figure 4.2) and industrial structure (using ABI data on employment in different sectors). Thus, the typology building approach is started using 50 indicators of resort socio-economic performance obtained from ONS Census data and other administrative datasets and is applied to 399 excluded resort localities.

Step 2: The preparation of variables

Cluster analysis requires normally distributed data. Therefore, missing values, highly skewed distributions and distributions with outliers can create problems. In this data set, there are no missing data for the variables. All the variables (except the crime domain rank and median gross annual household income) are measured as percentages, generally expressed in terms of numbers of residents, households, claimants and employee jobs. However, because the range of each percentage across the 399 LSOAs can be widely different for each variable,
a standardised measure comparable between variables is actually input into the analysis. If left un-standardised, those variables with larger values will swamp the effect of indicators with smaller values. Thus, in order to ensure that all variables have the same weight in the classification, the variables included in the analysis were standardised to a mean of 0 and a standard deviation of 1. Standardisation was accomplished in SPSS during the course of Principal Component Analysis (PCA), which was used to reduce the 50 variables to a smaller set of variables for cluster analysis.

Step 3: Finding patterns of variation in the data

Patterns of variation in the data are identified by the way in which groups of variables are related to each other. PCA is used to identify such relationships. At the start, a numerical relationship (correlation coefficient) between each variable and every other variable in the data is calculated. The resulting table of coefficients (the correlation matrix, as it is known) displays a more or less complex pattern with some pairs of variables correlating high and positive (high values with high values) with each other and others high and negative (high values with low values). Other pairs of variables will display little relationship. This inter-correlation structure is useful as it suggests that certain types of variables are measuring a common underlying dimension. The intent of PCA is to elicit these underlying dimensions from the inter-relationships between the variables. The resulting ‘principal components’ can then be interpreted/named from the variables of which they are comprised. Usually, a small number of such components will be representative of a large amount of the total variation that exists in the data.

Prior to undertaking the PCA, the suitability of the data for PCA was assessed. Six conditions must be satisfied for a dataset to be considered suitable:

1. Minimum number of cases
2. Sample to variable ratio
3. Factorability of the correlation matrix
4. Bartlett’s test of sphericity
5. Sampling adequacy for set of variables
6. Sampling adequacy of individual variables
Thus, there are two sample size requirements (i.e., items 1 and 2). In terms of the minimum number of cases, it is widely acknowledged that the use of larger samples in PCA is necessary to yield distinct and reliable principal components. However, a wide range of recommendations regarding sample size in PCA have been proposed. For instance, Tabachnick and Fidell (2001) state that a minimum of 300 cases are needed, whereas Hair et al. (1995) suggest that sample sizes should be 100 or greater. The lack of agreement is noted in a number of PCA textbooks, which invariably cite the work of Comrey and Lee (1992). They provided the following scale of sample size (100 = poor, 200 = fair, 300 = good, 500 = very good, 1,000 or more = excellent) and urged researchers to obtain samples of 300 or more observations whenever possible. As such, the literature suggests that the sample size of 399 LSOAs is adequate. Regarding the sample to variable ratio, the work of Gorsuch (1983) is widely referenced in the PCA literature. The ratio of cases to variables in a PCA should be at least 5 to 1. With 399 cases and 50 variables, the ratio of cases to variables is 7.9 to 1, which exceeds the requirement for the ratio of cases to variables.

When performing PCA in SPSS, the first body of output concerns data screening, assumption testing and sampling adequacy. The initial output is the correlation matrix, which should be screened for two reasons. One reason is because PCA requires that there be some correlations greater than 0.3 between the variables included in the analysis. If there are few correlations above 0.3, it is a waste of time carrying on with the analysis, as PCA attempts to clump subgroups of variables together based upon their correlations (Tabachnick and Fidell, 2001). For this set of variables, there are 351 correlations (out of 1,225) in the matrix greater than 0.3, satisfying this requirement. Second, it is important to check the correlation between variables to verify that there are no serious multicollinearity problems. If there are more correlations in the matrix that are above 0.8 than 0.3, then the PCA function in SPSS will not produce valid component loading values (Tabachnick and Fidell, 2001). For this set of variables, there are 9 correlations in the matrix greater than or equal to 0.8 (see Table 4.10), which is very small number compared to the 351 correlations above 0.3. Although common sense suggests that one of each pair of highly correlated variables should be removed because
much of the information is redundant, there is actually another way of thinking about highly correlated variables:

‘It is likely that variables that can predict the value of other variables would enable the classification to predict other behaviours. Therefore, there is an advantage in retaining a high proportion of highly correlated variables as they can be seen as powerful predictors’ (Voas and Williamson, 2001: 64).

Ultimately (and strictly speaking), because PCA is being used and the components themselves are actually input into the cluster analysis, the presence of a small number of highly correlated variables is not an issue.

Table 4.10: Highly correlated variables

<table>
<thead>
<tr>
<th>Demographic dependency ratio</th>
<th>% pop. working age</th>
<th>-0.976</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of all employee jobs that are full-time</td>
<td>% of all employee jobs that are part-time</td>
<td>-0.926</td>
</tr>
<tr>
<td>% of working age pop. claiming JSA for over 6 months</td>
<td>% of working age pop. claiming JSA for over 12 months</td>
<td>0.925</td>
</tr>
<tr>
<td>% of working age pop. claiming JSA</td>
<td>% of working age pop. claiming JSA for over 6</td>
<td>0.859</td>
</tr>
<tr>
<td>% of working age pop. in employment, classified as managers and professionals</td>
<td>% of working age pop. in employment, classified as other manual</td>
<td>-0.855</td>
</tr>
<tr>
<td>Median age</td>
<td>% pop. pensionable age</td>
<td>0.850</td>
</tr>
<tr>
<td>% of working age pop. self-employed</td>
<td>% of working age pop. in employment, classified as managers and professionals</td>
<td>0.826</td>
</tr>
<tr>
<td>% of working age pop. with higher education (i.e., level 4/5 qualifications)</td>
<td>% of working age pop. with no qualifications</td>
<td>-0.810</td>
</tr>
<tr>
<td>% of working age pop. claiming Income Support Benefit/Severe Disability Allowance</td>
<td>% of working age pop. claiming Incapacity Benefit/Severe Disability Allowance</td>
<td>0.809</td>
</tr>
</tbody>
</table>

Note: two variables appear twice: % of working age pop. claiming JSA for over 6 months; and % of working age pop. in employment, classified as managers and professionals.

Source: Author’s own work

Besides assessing the correlations, several statistical tests should be used to evaluate the suitability of the data for PCA. These tests include Bartlett’s Test of Sphericity and Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO MSA). The Bartlett Test of Sphericity tests whether the correlations between variables are sufficiently large for PCA to be appropriate. It does so by comparing the correlation matrix with a matrix of zero correlations (technically called the identity matrix, which consists of all zeros except the 1’s
along the diagonal). PCA requires that the probability associated with the test statistic be less than the level of significance (i.e., $p = \text{less than } 0.05$). In this case the test statistic is significant, $\chi^2 = 36320.217 \ (df. \ 1225) \ p <0.001$, indicating that the correlations within the correlation-matrix are sufficiently different from zero to warrant PCA. Regarding the KMO MSA, the test statistic takes values between 0 and 1, with small values meaning that overall the variables have too little in common to warrant a PCA. Kaiser (1974) recommends a bare minimum of 0.5 (for each individual variable as well as the set of variables) and that values between 0.6 and 0.69 are ‘mediocre’, values between 0.7 and 0.79 are ‘good’, values between 0.8 to 0.89 are ‘great’ and values above 0.9 are ‘superb’. The overall MSA for the set of variables included in the analysis was 0.81, which exceeds the minimum requirement of 0.5 for overall MSA and falls into the range of being ‘great’, thus indicating that the sample size is adequate for PCA. The MSA for the individual variables is located along the diagonal of the ‘anti-image correlation matrix’ (another output returned by the PCA function in SPSS). On iteration 1, the MSA for 42 of the individual variables included in the analysis was greater than 0.5, supporting their retention in the analysis. Thus, 8 variables had values below 0.5 (Table 4.11). Consequently, these variables were removed and the PCA was computed again.

Table 4.11: Variables with an MSA value below 0.5

% pop. aged 16+ in employment, working in agriculture and fishing	0.300
% pop. aged 16+ in employment, working in energy and water	0.144
% pop. aged 16+ in employment, working in manufacturing	0.264
% pop. aged 16+ in employment, working in construction	0.256
% pop. aged 16+ in employment, working in distribution, hotels and restaurants	0.435
% pop. aged 16+ in employment, working in transport and communications	0.138
% pop. aged 16+ in employment, working in banking, finance and insurance	0.265
% pop. aged 16+ in employment, working in public administration, education and health	0.348

Source: Author’s own work

To be clear, PCA is an iterative process. If conditions are not met and the remedial action meant the removal of variables, then the PCA must be computed again. On iteration 2, with 399 cases and 42 variables, the ratio of cases to variables is 9.5 to 1, which exceeds the
requirements for the ratio of cases to variables. For this set of variables, there are 861 correlations in the matrix and of these, 346 are greater than 0.3 and 9 are greater than or equal to 0.8, which indicates the presence of substantial correlations. The probability associated with the Bartlett Test of Sphericity is less than 0.001 ($\chi^2 = 34798.620$, df. 861), which satisfies this requirement. Lastly, PCA requires that the KMO MSA be greater than 0.5 for each individual variable as well as the set of variables. The MSA for all of the individual variables included in the analysis was greater than 0.5, supporting their retention in the analysis. In addition, the overall MSA for the set of variables included in the analysis was 0.84, which exceeds the minimum requirement of 0.5 for overall MSA. Thus, all conditions regarding the appropriateness of PCA were met on iteration 2. The next task, therefore, was to extract the components.

In PCA, the number of components extracted is equal to the number of variables being analysed. Thus, an issue which confronts all PCA-based investigations is how many components are truly meaningful and worthy of being retained, interpreted, and used in subsequent analyses. Numerous extraction approaches have been proposed to determine the optimum number of components, including:

1. Kaiser’s stopping rule;
2. Scree test;
3. Percent of cumulative variance; and,
4. Number of non-trivial components.

No single method should be relied on to determine component extraction (Gorsuch, 1983; Hair et al., 1995; Tabachnick and Fidell, 2001). It is widely acknowledged that ‘the simultaneous use of multiple decision rules is appropriate and often desirable’ (Tabachnick and Fidell, 2001: 200). Each of the four ways of deciding on the appropriate number of components is now considered in turn.

Again, the number of components extracted in a PCA is equal to the number of observed variables being analysed. So, because 42 variables were analysed in the present PCA, 42 components were initially extracted. However, SPSS also extracted components
based on Kaiser’s stopping rule, which states that only the number of components with eigenvalues over 1.0 should be included in the analysis. The rationale for this criterion is neatly summarised by Rourke and Hatcher (2013: 17):

‘Each observed variable contributes one unit of variance to the total variance in the data set. Any component that displays an eigenvalue greater than 1.0 is accounting for a greater amount of variance than had been contributed by one variable. Such a component is therefore accounting for a meaningful amount of variance, and is worthy of being retained. On the other hand, a component with an eigenvalue less than 1.0 is accounting for less variance than had been contributed by one variable. The purpose of principal component analysis is to reduce a number of observed variables into a relatively smaller number of components; this cannot be effectively achieved if you retain components that account for less variance than had been contributed by individual variables. For this reason, components with eigenvalues less than 1.0 are viewed as unimportant, and are not retained’.

Table 4.12 shows the importance of each of the 42 principal components. Only eight components have eigenvalues over 1.0, and together these explain 80% of the total variability in the data. Kaiser’s criterion has been shown to produce the correct number of components when the sample size exceeds 300 observations and the mean communality is greater than or equal to 0.60 (Stevens, 1986). Thus, the output called ‘communalities’ was checked. The communalities help explain the total amount an individual variable shares with other variables included in the analysis. The average of the communalities was found by adding them up and dividing by the number of communalities (i.e., 33.5/42 = 0.797). This finding leads to the conclusion that an eight component solution is probably appropriate.

A second, more subjective method for determining the number of components to retain is the scree test, which involves the visual exploration of a graphical representation of the eigenvalues. In this method, the eigenvalues associated with each component are plotted against their ordinal numbers (i.e., first eigenvalue, second eigenvalue, etc.). Afterwards, the graph is examined to determine the point at which the last significant drop or break takes place, in other words, where the line levels off. The recommendation is to ignore all of the points along the level part of the line including the transition point, and count the points along the precipitously dropping part of the line to ascertain the number of important or major
components (Hair et al., 1995; Tabachnick and Fidell, 2001; Rourke and Hatcher, 2013). The scree plot is shown in Figure 4.6. It can be seen that the curve begins to tail off after four components, but there is another drop after six components before a stable plateau is reached. Thus, this scree plot indicates that a six-component solution would be appropriate.

The third approach is to retain enough components so that the cumulative percent of variance is equal to some minimal value. Reading down the far right column in Table 4.12 reveals the percentages of cumulative variance for the components in the analysis. The addition of each component adds some new variance to the cumulative variance. The question that arises is at what point the adding process should be stopped. While no absolute threshold has been adopted, for the social sciences a minimum of 70% cumulative variance is recommended (Hair et al., 1995; Tabachnick and Fidell, 2001; Rourke and Hatcher, 2013). In the case of the 42 measures on the 399 excluded resort localities, 6 components summarise just over 70% of the total variation in the original data.
Table 4.12: Initial PCA for the 42 variables of resort socio-economic performance

<table>
<thead>
<tr>
<th>Component</th>
<th>Total</th>
<th>% of Variance</th>
<th>Cumulative %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.476</td>
<td>24.943</td>
<td>24.943</td>
</tr>
<tr>
<td>2</td>
<td>8.849</td>
<td>21.069</td>
<td>46.012</td>
</tr>
<tr>
<td>3</td>
<td>4.496</td>
<td>10.705</td>
<td>56.716</td>
</tr>
<tr>
<td>4</td>
<td>2.696</td>
<td>6.419</td>
<td>63.135</td>
</tr>
<tr>
<td>5</td>
<td>2.433</td>
<td>5.793</td>
<td>68.928</td>
</tr>
<tr>
<td>6</td>
<td>2.043</td>
<td>4.865</td>
<td>73.792</td>
</tr>
<tr>
<td>7</td>
<td>1.364</td>
<td>3.247</td>
<td>77.04</td>
</tr>
<tr>
<td>8</td>
<td>1.146</td>
<td>2.729</td>
<td>79.769</td>
</tr>
<tr>
<td>9</td>
<td>0.927</td>
<td>2.206</td>
<td>81.975</td>
</tr>
<tr>
<td>10</td>
<td>0.738</td>
<td>1.757</td>
<td>83.733</td>
</tr>
<tr>
<td>11</td>
<td>0.697</td>
<td>1.66</td>
<td>85.392</td>
</tr>
<tr>
<td>12</td>
<td>0.618</td>
<td>1.471</td>
<td>86.864</td>
</tr>
<tr>
<td>13</td>
<td>0.599</td>
<td>1.426</td>
<td>88.289</td>
</tr>
<tr>
<td>14</td>
<td>0.533</td>
<td>1.269</td>
<td>89.558</td>
</tr>
<tr>
<td>15</td>
<td>0.5</td>
<td>1.191</td>
<td>90.749</td>
</tr>
<tr>
<td>16</td>
<td>0.47</td>
<td>1.119</td>
<td>91.868</td>
</tr>
<tr>
<td>17</td>
<td>0.405</td>
<td>0.963</td>
<td>92.831</td>
</tr>
<tr>
<td>18</td>
<td>0.34</td>
<td>0.811</td>
<td>93.642</td>
</tr>
<tr>
<td>19</td>
<td>0.322</td>
<td>0.766</td>
<td>94.408</td>
</tr>
<tr>
<td>20</td>
<td>0.305</td>
<td>0.726</td>
<td>95.134</td>
</tr>
<tr>
<td>21</td>
<td>0.285</td>
<td>0.68</td>
<td>95.814</td>
</tr>
<tr>
<td>22</td>
<td>0.242</td>
<td>0.576</td>
<td>96.389</td>
</tr>
<tr>
<td>23</td>
<td>0.2</td>
<td>0.476</td>
<td>96.866</td>
</tr>
<tr>
<td>24</td>
<td>0.184</td>
<td>0.438</td>
<td>97.304</td>
</tr>
<tr>
<td>25</td>
<td>0.161</td>
<td>0.384</td>
<td>97.688</td>
</tr>
<tr>
<td>26</td>
<td>0.147</td>
<td>0.35</td>
<td>98.038</td>
</tr>
<tr>
<td>27</td>
<td>0.135</td>
<td>0.32</td>
<td>98.359</td>
</tr>
<tr>
<td>28</td>
<td>0.124</td>
<td>0.296</td>
<td>98.655</td>
</tr>
<tr>
<td>29</td>
<td>0.113</td>
<td>0.27</td>
<td>98.925</td>
</tr>
<tr>
<td>30</td>
<td>0.098</td>
<td>0.233</td>
<td>99.158</td>
</tr>
<tr>
<td>31</td>
<td>0.076</td>
<td>0.182</td>
<td>99.34</td>
</tr>
<tr>
<td>32</td>
<td>0.065</td>
<td>0.154</td>
<td>99.495</td>
</tr>
<tr>
<td>33</td>
<td>0.056</td>
<td>0.134</td>
<td>99.629</td>
</tr>
<tr>
<td>34</td>
<td>0.046</td>
<td>0.109</td>
<td>99.738</td>
</tr>
<tr>
<td>35</td>
<td>0.042</td>
<td>0.101</td>
<td>99.839</td>
</tr>
<tr>
<td>36</td>
<td>0.031</td>
<td>0.075</td>
<td>99.913</td>
</tr>
<tr>
<td>37</td>
<td>0.014</td>
<td>0.032</td>
<td>99.946</td>
</tr>
<tr>
<td>38</td>
<td>0.013</td>
<td>0.03</td>
<td>99.976</td>
</tr>
<tr>
<td>39</td>
<td>0.01</td>
<td>0.024</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>1.70E-05</td>
<td>4.05E-05</td>
<td>100</td>
</tr>
<tr>
<td>41</td>
<td>4.30E-07</td>
<td>1.02E-06</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author’s own work
A final criterion for solving the number of components problem is the assessment of component triviality. This strategy involves proceeding to component rotation and assessing the number of ‘loadings’ and their absolute magnitude. Component loadings are a measure of the importance of the variable to the component. If a component does not have at least three variables loading above the threshold of 0.40 on it, then it is a ‘trivial’ component and the variables should be eliminated and the analysis repeated (Hair et al., 1995; Tabachnick and Fidell, 2001; Rourke and Hatcher, 2013). Again, in order to identify whether there were any trivial components, it was necessary to proceed to component rotation.

Rotation maximises high variable loadings and minimises low variable loadings, therefore producing a more interpretable and simplified solution. There are two rotation techniques: orthogonal rotation and oblique rotation. Researchers have several methods to choose from both rotation options (see Hair et al., 1995 for a review). Orthogonal rotations produce component structures that are uncorrelated. In contrast, oblique rotations produce components that are correlated. Orthogonal ‘varimax’ rotation was used in this study.
Compared to other rotation methods, ‘a varimax rotation tends to maximise the variance of a column of the factor pattern matrix (as opposed to a row of the matrix). This rotation is the most commonly used orthogonal rotation in the social sciences’ (Rourke and Hatcher, 2013: 21).

The rotated component matrix is displayed in Table 4.13. By default, SPSS returns all loadings. However (following convention), it was requested that all loadings less than 0.4 be suppressed in the output and so there are blank spaces for many of the loadings. It is apparent from this table that only one component (i.e., component 8) had less than three meaningful variables loading on it. This finding leads to the conclusion that neither an eight (i.e., based on the eigenvalue-one criterion) nor six (i.e., based on the scree test; the cumulative proportion of variance) component solution is appropriate.
Table 4.13: PCA (with varimax rotation) loadings for eight components

<table>
<thead>
<tr>
<th>Variables</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of working age pop. in employment, classified as other white collar</td>
<td>-0.877</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of working age pop. with no qualifications</td>
<td>0.773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of working age pop. with higher education (i.e., level 4/5 qualifications)</td>
<td>-0.767</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of working age pop. in employment, classified as other manual</td>
<td>0.765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.405</td>
<td></td>
</tr>
<tr>
<td>Median gross annual household income</td>
<td>-0.731</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of working age pop. in employment, classified as skilled manual</td>
<td>0.526</td>
<td>0.919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of working age pop. claiming Job Seekers Allowance (JSA)</td>
<td>0.895</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of working age pop. claiming JSA for over 6 months</td>
<td>0.842</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JSA claimants as % of Out-of-Work benefits claimants</td>
<td>0.823</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JSA claimants (aged 18-24 years) as % of working age pop.</td>
<td>0.764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of household spaces vacant</td>
<td>0.685</td>
<td></td>
<td>0.904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of working age pop. claiming Incapacity Benefit/Severe Disability Allowance</td>
<td></td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of working age pop. claiming Income Support</td>
<td></td>
<td>0.771</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of working age pop. claiming Disability Living Allowance</td>
<td>0.535</td>
<td>0.704</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of working age pop. claiming Employment and Support Allowance</td>
<td>0.614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of older people receiving Pension Credit Guarantee Element</td>
<td>0.597</td>
<td>0.522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of dependent children receiving child tax-credit in out-of-work families</td>
<td>0.511</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of dependent children in lone parent families</td>
<td>0.417</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% pop. working age</td>
<td>0.847</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographic dependency ratio</td>
<td>-0.847</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of households living in overcrowded conditions</td>
<td></td>
<td>0.56</td>
<td>0.515</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of households without access to a car or van</td>
<td>0.454</td>
<td>0.541</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of all occupied household spaces owned</td>
<td></td>
<td>-0.442</td>
<td>-0.507</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% pop. White</td>
<td>0.872</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of households single pensioner</td>
<td></td>
<td>-0.476</td>
<td>0.775</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median age of population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% pop. Children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of households single person</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% pop. pensionable age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of households with children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of all occupied household spaces rented from council/social</td>
<td>0.715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of all employee jobs that are tourism-related</td>
<td>0.691</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crime rank</td>
<td>0.596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of households lacking/bath/shower or inside toilet</td>
<td>0.449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of all employee jobs that are full-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of all employee jobs that are part-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Author’s own work

Number of components to extract:

Component 8 has less than three meaningful variables loading it, thus indicating that it is a ‘trivial’ component. So, seven components should be extracted.
Thus, the two variables loading above the threshold of 0.40 on component 8 were removed and the analysis repeated. Again, the first phase of a PCA is devoted to assessing the suitability of the dataset. A PCA requires:

- The ratio of cases to variables must be 5 to 1 or larger;
- The correlation matrix for the variables must contain 2 or more correlations of 0.3 or greater
- The correlation matrix for the variables must contain more correlations above 0.3 than 0.8;
- The Bartlett Test of Sphericity is statistically significant;
- The overall MSA is 0.50 or higher; and,
- Variables with a MSA less than 0.50 must be removed.

Table 4.14 presents the results obtained from the assumption tests. All requirements were met.

Table 4.14: Appropriateness of PCA – results from the assumption tests

<table>
<thead>
<tr>
<th>Tests</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample to variable ratio</td>
<td>399 cases / 40 variables = 9.97</td>
</tr>
<tr>
<td>Factorability of the correlation matrix</td>
<td>Of the 780 correlations in the matrix, 346 were greater than 0.3 and 8 were greater than or equal to 0.8</td>
</tr>
<tr>
<td>Bartlett Test of Sphericity</td>
<td><0.001 ($\chi^2 = 33427.766$, df. 780)</td>
</tr>
<tr>
<td>Sampling adequacy for set of variables</td>
<td>The overall MSA for the set of variables included in the analysis was 0.812</td>
</tr>
<tr>
<td>Sampling adequacy of individual variables</td>
<td>The MSA for all of the individual variables included in the analysis was greater than 0.5</td>
</tr>
</tbody>
</table>

Source: Author’s own work

Given these overall indicators, PCA was conducted with all 40 variables. The eigenvalue and component loading were set at conventional high values of 1.0 and 0.4 respectively. Applying the eigenvalue-one criterion on the number of principal components to be extracted suggest that seven components should be extracted as their respective eigenvalues are greater than 1.0. This conclusion is supported by the test of communalities. Earlier it was stated that Kaiser’s criterion is accurate when, first, the communality value for each variable is 0.50 or higher and, second, the average communality is greater than 0.6. It is apparent from Table 4.15 that there are no variables with communalities less than 0.50 (the average communality of the variables was 0.79). It is also apparent from Table 4.15 that the
seven components with eigenvalues greater than 1.0 together accounted for 78.7% of the total variance, thus satisfying the cumulative proportion of variance criteria (which says that the extracted components together should explain at least 70% of the variation). Furthermore, there are at least three variables with significant loadings on each component.

So far this section has described the process of PCA for the 50 variables of resort socio-economic performance. To recap, on iteration 1, eight variables were removed from the analysis because they failed to meet a minimum criteria of having a MSA value of 0.50 or above. On iteration 2, one component only had two variables loading above the cut-point of 0.40 and, therefore, these variables were removed. A PCA of the remaining 40 variables produced seven components which together summarise almost 80% of the total variation in the original data. Having obtained a component model that satisfies all requirements, it was next necessary to interpret this final solution.
Table 4.15: PCA (with varimax rotation) loadings for seven components

<table>
<thead>
<tr>
<th>Variables</th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
<th>Component 4</th>
<th>Component 5</th>
<th>Component 6</th>
<th>Component 7</th>
<th>Communality</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of working age pop. in employment, classified as other white collar</td>
<td>-0.872</td>
<td></td>
<td></td>
<td></td>
<td>-0.768</td>
<td></td>
<td></td>
<td>0.851</td>
</tr>
<tr>
<td>% of working age pop. with no qualifications</td>
<td>0.744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.845</td>
</tr>
<tr>
<td>% of working age pop. in employment, classified as other manual</td>
<td>0.770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.876</td>
</tr>
<tr>
<td>% of working age pop. with higher education (i.e., level #5 qualifications)</td>
<td>-0.768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.838</td>
</tr>
<tr>
<td>Median gross annual household income</td>
<td>-0.740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.807</td>
</tr>
<tr>
<td>% of working age pop. in employment, classified as skilled manual</td>
<td>0.528</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.501</td>
</tr>
<tr>
<td>% of working age pop. claiming Job Seekers Allowance (JSA)</td>
<td></td>
<td>0.919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.912</td>
</tr>
<tr>
<td>% of working age pop. claiming JSA for over 6 months</td>
<td>0.894</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.892</td>
</tr>
<tr>
<td>% of working age pop. claiming JSA for over 12 months</td>
<td>0.841</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.771</td>
</tr>
<tr>
<td>JSA claimants as % of Out-of-Work benefits claimants</td>
<td>0.823</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.879</td>
</tr>
<tr>
<td>JSA claimants (aged 18-24 years) as % of working age pop.</td>
<td></td>
<td>0.764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.722</td>
</tr>
<tr>
<td>% of household spaces vacant</td>
<td>0.685</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.719</td>
</tr>
<tr>
<td>% of working age pop. claiming Incapacity Benefit/Severe Disability Allowance</td>
<td></td>
<td>0.905</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.886</td>
</tr>
<tr>
<td>% of working age pop. claiming Income Support</td>
<td>0.867</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.896</td>
</tr>
<tr>
<td>% of working age pop. claiming Disability Living Allowance</td>
<td>0.772</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.749</td>
</tr>
<tr>
<td>% of working age pop. claiming Out-of-Work benefits</td>
<td>0.535</td>
<td>0.708</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.819</td>
</tr>
<tr>
<td>% of working age pop. claiming Employment and Support Allowance</td>
<td></td>
<td>0.617</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.609</td>
</tr>
<tr>
<td>% of older people receiving Pension Credit Guarantee Element</td>
<td>0.596</td>
<td>0.526</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.708</td>
</tr>
<tr>
<td>% of dependent children receiving child tax-credit in out-of-work families</td>
<td>0.402</td>
<td>0.504</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.702</td>
</tr>
<tr>
<td>% of dependent children in lone parent families</td>
<td>0.409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.512</td>
</tr>
<tr>
<td>Demographic dependency ratio</td>
<td>-0.852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.880</td>
</tr>
<tr>
<td>% pop. working age</td>
<td>0.851</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.938</td>
</tr>
<tr>
<td>% pop. pensionable age</td>
<td>-0.677</td>
<td>0.669</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.938</td>
</tr>
<tr>
<td>% of households living in overcrowded conditions</td>
<td>0.557</td>
<td>0.517</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.786</td>
</tr>
<tr>
<td>% of households without access to a car or van</td>
<td>0.454</td>
<td>0.535</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.829</td>
</tr>
<tr>
<td>% pop. White</td>
<td>0.407</td>
<td>-0.492</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.606</td>
</tr>
<tr>
<td>% of households single pensioner</td>
<td></td>
<td></td>
<td>0.873</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.833</td>
</tr>
<tr>
<td>Median age of population</td>
<td>-0.485</td>
<td>0.768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.918</td>
</tr>
<tr>
<td>% pop. Children</td>
<td>-0.727</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.838</td>
</tr>
<tr>
<td>% of households single person</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.708</td>
</tr>
<tr>
<td>% of households lone parent with dependent children</td>
<td></td>
<td></td>
<td></td>
<td>-0.589</td>
<td></td>
<td></td>
<td></td>
<td>0.936</td>
</tr>
<tr>
<td>% of working age pop. self-employed</td>
<td></td>
<td></td>
<td></td>
<td>0.810</td>
<td></td>
<td></td>
<td></td>
<td>0.790</td>
</tr>
<tr>
<td>% of working age pop. in employment, classified as managers and professionals</td>
<td></td>
<td></td>
<td>-0.515</td>
<td>0.708</td>
<td></td>
<td></td>
<td></td>
<td>0.806</td>
</tr>
<tr>
<td>% of all employee jobs that are tourism-related</td>
<td></td>
<td></td>
<td></td>
<td>0.710</td>
<td></td>
<td></td>
<td></td>
<td>0.552</td>
</tr>
<tr>
<td>Crime rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.605</td>
<td></td>
<td></td>
<td>0.570</td>
</tr>
<tr>
<td>% of households lacking/sharing bath/shower or inside toilet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.450</td>
<td></td>
<td></td>
<td>0.593</td>
</tr>
<tr>
<td>% of households with no central heating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.804</td>
<td></td>
<td></td>
<td>0.743</td>
</tr>
<tr>
<td>% of all occupied household spaces rented from council/social</td>
<td>0.446</td>
<td></td>
<td></td>
<td></td>
<td>-0.719</td>
<td></td>
<td></td>
<td>0.928</td>
</tr>
<tr>
<td>% of all occupied household spaces rented privately</td>
<td></td>
<td></td>
<td></td>
<td>0.482</td>
<td>0.533</td>
<td></td>
<td></td>
<td>0.895</td>
</tr>
<tr>
<td>% of all occupied household spaces owned</td>
<td>-0.437</td>
<td>-0.501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.862</td>
</tr>
</tbody>
</table>
Table 4.15 shows which variables (or indicators) comprise each of the components. Again, following convention, only those loadings with a value of 0.4 or greater are included. Notice that 12 of the 40 variables have a relationship to two or more of the derived components; the presence of cross-loading variables is referred to as ‘complex structure’. There are a variety of prescriptions for handling complex variables (Hair et al., 1995; Tabachnick and Fidell, 2001; Rourke and Hatcher, 2013). One approach is to leave as is (i.e., include the variables in multiple components). A second approach is ignore the complexity and treat the variable as belonging to the component on which it has the highest loading. Another simple solution to complexity is to scratch the variables out and ignore them in the interpretation. Other prescriptions are to remove all variables with complex structure and repeat the PCA or try different methods of component rotation to see if a more interpretable solution can be found. The recommendation is to repeat the analysis only if the overall solution demonstrates complex structure (Hair et al., 1995; Tabachnick and Fidell, 2001; Rourke and Hatcher, 2013). Thus, given that the overall solution demonstrated simple structure (i.e., 28 of the 40 variables have one substantial loading on a component), it was not necessary to eliminate the complex variables from the PCA. Since the purpose of undertaking the PCA was to reduce the large number of indicators to a smaller set of variables for cluster analysis (and not dimension reduction of data per se), a strict interpretation of the components is not warranted. If, say, the components were not going to be used in subsequent analysis then it would, for the sake of interpretability, be sensible to assign the complex variables based on their loadings to a particular component or ignore such variables in the interpretation of the components (both of these options provide easier interpretation of results, but sacrifice information just for interpretability sake). Thus, this study chose to include variables with complex structure as a variable in multiple components. Summary descriptions of each component are provided in Table 4.16.
Table 4.16: Summary descriptions of component characteristics

<table>
<thead>
<tr>
<th>Component</th>
<th>High score on this component means:</th>
</tr>
</thead>
</table>
| Component 1 | - High proportion of persons with no qualifications and consequently a lower proportion with a degree or higher.
- High proportion of jobs held in manual occupations and consequently a lower proportion in professional/managerial and other white collar occupations
- Lower than average household income
- High proportion of children in out-of-work families
- High proportion of white ethnic groups
- High proportion of social rented housing |
| Component 2 | - High level of Jobseekers Allowance claimants
- High level of youth unemployment
- High level of long-term unemployment
- High proportion of car-less households
- High proportion of household spaces vacant |
| Component 3 | - High proportion claiming Incapacity Benefit/Severe Disability Allowance
- High proportion claiming Disability Living Allowance
- High proportion claiming Employment and Support Allowance
- High proportion claiming Income Support
- High proportion of older people claiming Pension Credit
- High proportion of children in out-of-work families
- High proportion of children in lone parent families
- Low proportion of owner-occupied housing |
| Component 4 | - High proportion of persons of working age
- Low proportion of persons of pensionable age, but many older people that are resident claim Pension Credit
- Low average age
- Low proportion of owner-occupied housing
- High proportion of households living in overcrowded conditions
- High proportion of car-less households
- High proportion of population non-white |
| Component 5 | - Low proportion of persons of young age
- High proportion of persons of pensionable age
- High average age
- High proportion of single-person households
- High proportion of single-person households with occupants above pensionable age.
- Low proportion of lone parent households with dependent children |
| Component 6 | - High level of self-employment
- High proportion of jobs held in professional/managerial occupations
- High proportion of tourism-related jobs
- High proportion of private rented housing
- High proportion of households living in overcrowded conditions
- High proportion of households without sole use of bath, shower or toilet
- High levels of burglary, theft, criminal damage and violence |
| Component 7 | - High proportion of owner-occupied housing
- High proportion of private rented accommodation and consequently a lower proportion of social rented housing
- High proportion of households without central heating |

Source: Author’s own work
The label attached to each component/dimension is as follows:

Component 1 White, working-class social housing neighbourhoods with disadvantages
Component 2 Limited access to employment opportunities
Component 3 High levels of benefit claimants, much poor health
Component 4 Prime age demographic
Component 5 Older demographic profile
Component 6 Professionals, tourism jobs, private renters and poor housing conditions
Component 7 Mixed private housing neighbourhoods with high levels of home ownership

Step 4: Scoring excluded resort localities on the dimensions of variation

The next stage in the process calculates a ‘score’ on the identified dimensions in the data as if they were variables in their own right – which they are, but of a much more general nature than the original input variables. Scoring the excluded resort localities was accomplished in SPSS using the ‘Factor Score’ command, as shown in Figure 4.7. Three different procedures may be used to calculate component scores. However, the regression method provided the most appropriate method for two main reasons. One reason is because the PCA was based on a correlation matrix as opposed to a covariance matrix. The second reason is because the score it provides is a linear composite of the optimally-weighted observed variables (Rourke and Hatcher, 2013). In other words, it includes all the observed variables, as opposed to only the variables that demonstrated meaningful loadings for the component in question. Once the scores were calculated and saved as variables, they were standardised to a mean of 0 and a standard deviation of 1. Those values were then entered into the cluster analysis.
Step 5: Grouping localities according to their scores on the main dimensions in the data

The final task is to group the 399 excluded resort localities according to their scores on the 7 dimensions in the data. The statistical procedure used to form groups that share similar characteristics is called cluster analysis. Before the cluster analysis can be undertaken, three important decisions are required. These decisions relate to:

(i) Choice of clustering procedure;
(ii) Choice of clustering method; and,
(iii) Choice of similarity or distance measure.

In SPSS, cluster analysis can be performed using hierarchical methods (with <1,000 cases) or non-hierarchical methods (with 100 to 100,000 cases), each of them relying on a different algorithm to create the clusters. In hierarchical procedures the clustering process begins with each case representing an individual cluster (i.e., there are as many clusters as cases). These clusters are then successively merged depending on their similarity. At each step in the hierarchical procedure, either a new cluster is formed or one case joins a previously
grouped cluster. This process continues until only one cluster is left (see Figure 4.8). After clustering is complete, the optimum number of clusters is then chosen based on the agglomeration schedule. The alternate procedure of non-hierarchical clustering is very different from the hierarchical clustering procedure, which is applied when there is no prior knowledge of how many clusters there may be. Another difference is that non-hierarchical clustering is not based on distance measures. Whereas hierarchical clustering uses the between-cluster variation as measure to form homogenous clusters, non-hierarchical clustering uses the within-cluster variation (see Figure 4.9). The procedure starts by randomly assigning cases to the number of clusters specified by the researcher. After calculating the means of the temporary clusters, it will move cases between the clusters, trying to minimise variation within clusters. If the reallocation of a case to another cluster decreases the within-cluster variation, this case is reassigned to that cluster. This iterative process continues until no transfer of a case to a cluster results in improvement in the within-cluster variation. After clustering is complete, the means of each cluster for each variable can be checked to assess how distinct the clusters are.

Figure 4.8: Hierarchical cluster analysis
Source: Mooi and Sarstedt (2011: 244)
In this project, hierarchical clustering provided the most suitable procedure to form the
groups of LSOAs for two main reasons. First, the number of clusters in the solution need not
be specified in advance and second, the procedure allows for the comparison of the clustering
result with an increasing number of clusters. Within this approach to cluster analysis there are
a number of different methods available to determine which clusters should be joined at each
stage. Hierarchical methods (also referred to as algorithms or linkage measures) include, for
example, single linkage (nearest neighbour), complete linkage (furthest neighbour), median
linkage and centroid clustering. Figure 4.10 illustrates these methods for two randomly
framed clusters. However, the most commonly used hierarchical clustering method is Ward’s
method. This method is preferred because:

‘it uses an analysis of variance approach to evaluate the distances between clusters. In
general, this method is very efficient. Cluster membership is assessed by calculating the
total sum of squared deviations from the mean of a cluster. The criterion for fusion is
that it should produce the smallest possible increase in the error sum of squares’ (Burns
and Burns, 2008: 557).

To be clear, the main advantage of Ward’s method is its statistical power. Indeed, it is widely
acknowledged that Ward’s method returns more accurate agglomeration coefficients than any
other hierarchical cluster method (see Gore, 2000 for a review). The coefficients represent the ‘distance’ (i.e., similarity) of the clusters combined at every stage in the hierarchical cluster analysis. An agglomeration schedule with accurate coefficients means a more robust overall solution. For this reason, Ward’s method was selected as the clustering method. This decision meant that the question of how to measure ‘distance’ (in other words, how similar are different LSOAs to each other?) is entirely sidestepped. A number of different measures have been proposed to measure ‘distance’ for interval data (see Figure 4.11). However, when the Ward, Centroid or Median method is requested it is not possible to use any other measure but the squared Euclidean distance measure. The squared Euclidean distance is the sum of the squared differences over all the variables. At each step in the procedure, the squared Euclidean distance between all pairs of cases and clusters is calculated and the pair of cases or clusters with the smallest squared Euclidean distance will be combined with one another.
a. Single linkage (or nearest neighbour)

b. Complete linkage (or furthest neighbour)

c. Average linkage

d. Centroid clustering

Figure 4.10: Hierarchical clustering methods

Source: Author’s own elaboration
In practice, since it cannot be known at the outset the number of clusters that will emerge, a two-step sequence of analysis is undertaken:

1) Hierarchical cluster analysis was completed using Ward’s method applying squared Euclidean distance as the distance measure, in order to determine the optimum number of clusters within the sample.

2) Hierarchical cluster analysis was repeated with the selected number of clusters, in order to allocate every LSOA in the sample to a particular cluster.

So, the main objective is determining how many clusters exist. The hierarchical cluster analysis calculated every possibility between every LSOA forming their own cluster (as many clusters as there are LSOAs) and every LSOA belonging to the same cluster, giving a range in the set of data from 1 to 399 clusters. The results of the hierarchical cluster analysis are summarised in the agglomeration schedule (Table 4.17). Each row in the schedule shows a stage at which either two LSOAs are combined, individual LSOAs are added to existing clusters, or two existing clusters are combined. For example:

- **At stage 1**, LSOA 374 is clustered with LSOA 380. The squared Euclidean distance between these two LSOAs is very small at 0.075. Neither LSOA has been previously clustered (as indicated by the two zeros under Cluster 1 and Cluster 2), and the next stage when this cluster of two LSOAs combines with another LSOA or LSOA cluster is Stage 260.
At stage 10, LSOA 115 joins the LSOA-123 cluster (LSOA 123 was previously clustered with LSOA 195 back in Stage 6, thus creating a cluster of 3 cases: LSOAs 115, 123, and 195). The squared Euclidean distance between LSOA 115 and LSOA-123 cluster is 1.311. LSOA 115 has not been previously clustered (as indicated by the zero under Cluster 1), and LSOA 123 was previously clustered at Stage 6. The next stage when the LSOA-115 cluster combines with another LSOA or LSOA cluster is stage 91.

Thus, the first stage in the procedure combined the two most similar LSOAs, resulting in a very small agglomeration coefficient. The last stage combined the final two aggregate clusters into a single cluster, containing every LSOA in the sample. The agglomeration coefficient associated with this final grouping is therefore the largest. (The agglomeration schedule shown in Table 4.17 has been cropped. Only the top and the bottom of the schedule are shown as it becomes quite long with a large number of LSOAs.)

Analysis of the agglomeration coefficient provides direction in the choice of the number of clusters. It is necessary to stop cluster formation when the increase in the coefficients between two consecutive stages is large. A large difference between the coefficients of two adjacent stages is an indication that the clusters being combined are too dissimilar to form a homogeneous group. The recommendation is to look at this figure from the last row upwards, as the goal is to identify the lowest possible number of clusters. So, reading from the bottom upwards (Table 4.17), it is apparent that for one cluster there is agglomeration coefficient of 2786, for two clusters 2545.733, for three clusters 2320.689, etc. To get a better overview of the changes in the coefficients as the number of clusters increase, the coefficients were rewritten as in Table 4.18. The final column, headed ‘Change’, indicates to stop at the four cluster solution, after stage 394, as succeeding clustering adds very much less to distinguishing between clusters. Once the number of clusters was identified, the hierarchical cluster analysis was repeated to place the 399 LSOAs into one of the four clusters. This action meant a new variable was generated at the end of the SPSS data file, providing the cluster membership for each LSOA in the sample. In the results chapter, the composition and characteristics of each cluster will be explored using analysis of variance.
Table 4.17: Agglomeration schedule

<table>
<thead>
<tr>
<th>Stage</th>
<th>Cluster combined</th>
<th>Coefficients</th>
<th>Stage cluster first appears</th>
<th>Next stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cluster 1</td>
<td>Cluster 2</td>
<td>Cluster 1</td>
<td>Cluster 2</td>
</tr>
<tr>
<td>1</td>
<td>374</td>
<td>380</td>
<td>0.075</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>193</td>
<td>233</td>
<td>0.171</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>315</td>
<td>397</td>
<td>0.27</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>210</td>
<td>347</td>
<td>0.38</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>334</td>
<td>389</td>
<td>0.522</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>123</td>
<td>195</td>
<td>0.666</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>176</td>
<td>197</td>
<td>0.811</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>173</td>
<td>239</td>
<td>0.975</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>188</td>
<td>236</td>
<td>1.142</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>115</td>
<td>123</td>
<td>1.311</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>391</td>
<td>2</td>
<td>24</td>
<td>1573.527</td>
<td>382</td>
</tr>
<tr>
<td>392</td>
<td>2</td>
<td>71</td>
<td>1695.175</td>
<td>391</td>
</tr>
<tr>
<td>393</td>
<td>5</td>
<td>37</td>
<td>1821.219</td>
<td>385</td>
</tr>
<tr>
<td>394</td>
<td>1</td>
<td>21</td>
<td>1950.038</td>
<td>389</td>
</tr>
<tr>
<td>395</td>
<td>2</td>
<td>16</td>
<td>2109.838</td>
<td>392</td>
</tr>
<tr>
<td>396</td>
<td>1</td>
<td>5</td>
<td>2320.689</td>
<td>394</td>
</tr>
<tr>
<td>397</td>
<td>2</td>
<td>18</td>
<td>2545.733</td>
<td>395</td>
</tr>
<tr>
<td>398</td>
<td>1</td>
<td>2</td>
<td>2786</td>
<td>396</td>
</tr>
</tbody>
</table>

Source: Author’s own work

Table 4.18: Reformed agglomeration table (not provided on SPSS)

<table>
<thead>
<tr>
<th>No of clusters</th>
<th>Agglomeration last step</th>
<th>Coefficients this step</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2786</td>
<td>2545.733</td>
<td>240.267</td>
</tr>
<tr>
<td>3</td>
<td>2545.733</td>
<td>2320.689</td>
<td>225.044</td>
</tr>
<tr>
<td>4</td>
<td>2320.689</td>
<td>2109.838</td>
<td>210.851</td>
</tr>
<tr>
<td>5</td>
<td>2109.838</td>
<td>1950.038</td>
<td>159.8</td>
</tr>
<tr>
<td>6</td>
<td>1950.038</td>
<td>1821.219</td>
<td>128.819</td>
</tr>
<tr>
<td>7</td>
<td>1821.219</td>
<td>1695.175</td>
<td>126.044</td>
</tr>
<tr>
<td>8</td>
<td>1695.175</td>
<td>1573.527</td>
<td>121.648</td>
</tr>
</tbody>
</table>

The first large difference in coefficient values, a clear demarcation point.

Source: Author’s own work
4.5 Summary

The main purpose of this study is to contribute to knowledge and understanding of social exclusion in a post-mature mass tourism coastal resort context. It does so by investigating characteristics associated with social exclusion in English seaside resorts, factors that influence social exclusion of resident populations and the nature and incidence of localised problem complexes. This chapter has explained the process and methodology of the research, which adopts a positivist paradigmatic perspective and a non-experimental, quantitative approach given that there is a dearth of knowledge of social exclusion in seaside resorts. Using the working definition of a seaside resort, a progressive three stage method was devised, with each stage corresponding to a research objective. These objectives led to the use of quantitative measures and secondary data analysis as a research method. It follows that a national seaside resort database was constructed in order to facilitate the analysis. The most logical and pragmatic first step was to begin the analysis of social exclusion with an examination of its nature and extent, using the newly invented local authority district area classification, small area geography and relevant, well-established deprivation measures. As a second step, in order to ascertain the influence of resort socio-economic performance on social exclusion, a resort-level analysis of a set of population- and place-based measures for deprived and less-deprived resorts was undertaken. These measures were identified by reviewing datasets available at the ward level and the LSOA level. This work also affords a basis for subsequent cluster analysis to identify the nature and incidence of localised problem complexes. Thus, a combination of univariate, bivariate and multivariate empirical analyses were undertaken at several geographic scales to illuminate variations in the incidence of a number of key exclusion-related variables. Having detailed the procedures and methods guiding this investigation, it is next necessary to document the study’s results.
Chapter 5

The Nature and Extent of Social Exclusion in English Seaside Resorts

To identify the nature and extent of social exclusion in English seaside resorts, analyses were undertaken on Indices of Deprivation data at several geographic scales (for details Section 4.2). First, due to the fact that such data are not available for seaside resorts specifically, a statistical analysis at district level was employed to illuminate geographical variations in the incidence of a number of key deprivation-related variables. This work addresses the question of whether multiple deprivation corresponds to ‘seaside’ districts in general and ‘seaside with resort’ districts in particular. The results of these analyses are given in Section 5.1. Second, a small-area analysis of the local authority districts classified as ‘seaside with resort’ was completed in order to establish the extent to which deprivation characteristics associated with social exclusion occurred within seaside resorts and to ascertain the nature and severity of these characteristics. The results are given in Section 5.2. Third, a resort-level analysis was undertaken and, in particular, there was further investigation of the nature and severity of deprivation within the 58 seaside resorts corresponding to the 1,686 ‘resort LSOAs’. These resorts are then analysed, put into the context of the national picture and compared with each other. The focus here is on the 25 larger seaside resorts and the 33 mid-sized seaside resorts which this study has defined based on resident population. Comparisons of deprivation patterns for the seaside resorts with England as a whole are drawn for 2004 and 2010. The seaside resorts were compared with each other both in terms of overall Index of Multiple Deprivation and using the individual deprivation domains, to assess if there are any differences in the patterns of deprivation. The results of these analyses are set out in Section 5.3. Finally, a summary drawing together the results of all the above-mentioned analyses, and providing a basis for the discussion in Chapter 7, is provided in Section 5.4.
5.1 District-level analysis

The aim of the analyses presented in this section is to establish the factual basis regarding whether local authority districts classified in this study as ‘seaside with resort’ differ from other district types, or from the general situation in England, with regard to a range of measures of deprivation. It sought to assess whether there were differences between seaside and non-seaside districts, and if so, the scale and the extent of the differences. The analysis is split into two sections here. The first looks at the six district level summary measures, as many of these summarise different aspects of multiple deprivation, and the second analyses the overall Index of Multiple Deprivation and individual domains, in order to understand the channels through which deprivation might affect different types of district and in particular, seaside districts with resorts.

5.1.1 Local authority district level indicators of multiple deprivation

In 2010 there were 326 districts in England as opposed to 354 for the two previous indices. Examination of the spatial distribution of the districts defined as ‘seaside’ or ‘coastal’ reveals that the majority of ‘seaside’ districts are located in southwest England, whilst the majority of ‘coastal’ districts are situated in England’s southeast. Both the South West and South East regions, however, contain the majority of seaside districts with resorts (see Table 5.1).
Table 5.1: Distribution of districts by region, 2010

<table>
<thead>
<tr>
<th>District type</th>
<th>Inland</th>
<th>Coastal</th>
<th>Seaside</th>
<th>Seaside (-R)</th>
<th>Seaside (+R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Midlands</td>
<td>37</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>East of England</td>
<td>36</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>London</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>North East</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>North West</td>
<td>28</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>South East</td>
<td>45</td>
<td>7</td>
<td>15</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>South West</td>
<td>19</td>
<td>2</td>
<td>16</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>West Midlands</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yorkshire & the Humber</td>
<td>18</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>251</td>
<td>22</td>
<td>53</td>
<td>16</td>
<td>37</td>
</tr>
</tbody>
</table>

Note:
1. Non-inland districts were classified as either ‘coastal’ or ‘seaside’ based on the proportion of their workforce employed in tourism-related businesses. Using the Annual Business Inquiry employee estimates for 2001, the ‘coastal districts’ are those districts which had a proportion lower than the national average of 8.2%; the ‘seaside districts’ are defined as those which had 8.2% or above employed in tourism-related businesses.
2. ‘Seaside’ districts were subdivided according to whether the districts contained identifiable seaside resorts.
3. See section on identification of seaside resorts – criteria and methods, in the methodology, for a fuller explanation of the items above.

Source: Author’s own work

Univariate analysis is a sensible starting point for the investigation of the geography of deprivation, providing both insight into the incidence of multiple deprivation and the major individual components of multiple deprivation. With respect to the former, which is the focus of this section, the extent of multiple deprivation is substantially greater in both ‘coastal’ and ‘seaside’ districts than in ‘inland’ ones (see Table 5.2). In terms of the average of LSOA scores indicator of multiple deprivation, which is most commonly used to make comparisons as it records the population weighted average of the combined scores for the LSOAs in a district, only 43.8% of inland districts are among England’s most deprived fifty per cent. The corresponding figure for seaside districts is 69.8% and coastal districts 72.1%. Similar patterns are evident with regard to the other five indicators of multiple deprivation. However, although it may appear at first glance that England’s ‘coastal’ districts appear to be suffering more from multiple deprivation, seaside districts with resorts score overwhelmingly worse than other district types (i.e., ‘inland’, ‘coastal’, ‘seaside without resort’) on all six summary measures of overall multiple deprivation.
Table 5.2: Per cent of districts in England’s most deprived 50 per cent, 2010

<table>
<thead>
<tr>
<th>Deprivation domain</th>
<th>Inland districts</th>
<th>Coastal Districts</th>
<th>Seaside Districts</th>
<th>Seaside (-R) Districts</th>
<th>Seaside (+R) Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av. rank of LSOA scores</td>
<td>43.8</td>
<td>72.7</td>
<td>69.9</td>
<td>43.8</td>
<td>81.1</td>
</tr>
<tr>
<td>Av. rank of LSOA ranks</td>
<td>43.4</td>
<td>77.3</td>
<td>69.8</td>
<td>43.8</td>
<td>81.1</td>
</tr>
<tr>
<td>Extent rank</td>
<td>45.8</td>
<td>68.2</td>
<td>62.3</td>
<td>25.0</td>
<td>78.4</td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>45.8</td>
<td>68.2</td>
<td>60.4</td>
<td>25.0</td>
<td>78.4</td>
</tr>
<tr>
<td>Income rank</td>
<td>47.8</td>
<td>59.1</td>
<td>56.6</td>
<td>18.8</td>
<td>73.0</td>
</tr>
<tr>
<td>Employment rank</td>
<td>47.4</td>
<td>63.6</td>
<td>56.6</td>
<td>18.8</td>
<td>73.0</td>
</tr>
</tbody>
</table>

Source: Author’s own work

The analysis reported in Table 5.2 is based on the proportion of districts falling within England’s worst fifty per cent. Results may differ at different levels of deprivation. Table 5.3 therefore reports results for the six summary measures of overall multiple deprivation by upper quartile. Here, while ‘coastal’ districts, when compared with ‘inland’ and ‘seaside’ districts, contain a greater share of local authorities in England’s most deprived 25 per cent, local authorities with very high levels of deprivation are also more prevalent in seaside districts with resorts, particularly with regard to the first two indicators of overall multiple deprivation and the measure of local concentration. These findings suggest that: i) the degree of multiple deprivation in seaside districts with resorts (27.0% / 32.4% respectively) is contributed to not only by income and employment (both 18.9%) but also by other elements; and, ii) although seaside districts with resorts contain few local authorities with widespread high levels of deprivation (18.9%), they are characterised by hotspots of severe multiple deprivation (37.8%). It is noticeable that very few seaside districts without identifiable resorts exhibit a level of multiple deprivation in the upper quartile, which indicates social exclusion is not a major or widespread problem in the local authorities associated with this type of district.
Table 5.3: Per cent of districts in England’s most deprived 25 per cent, 2010

<table>
<thead>
<tr>
<th>Deprivation domain</th>
<th>Inland districts</th>
<th>Coastal Districts</th>
<th>Seaside Districts</th>
<th>Seaside (-R) Districts</th>
<th>Seaside (+R) Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av. rank of LSOA scores</td>
<td>25.1</td>
<td>31.8</td>
<td>20.8</td>
<td>6.3</td>
<td>27.0</td>
</tr>
<tr>
<td>Av. rank of LSOA ranks</td>
<td>23.9</td>
<td>36.4</td>
<td>24.5</td>
<td>6.3</td>
<td>32.4</td>
</tr>
<tr>
<td>Extent rank</td>
<td>26.3</td>
<td>31.8</td>
<td>15.1</td>
<td>6.3</td>
<td>18.9</td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>22.3</td>
<td>40.9</td>
<td>30.2</td>
<td>12.5</td>
<td>37.8</td>
</tr>
<tr>
<td>Income rank</td>
<td>27.1</td>
<td>27.3</td>
<td>13.2</td>
<td>0.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Employment rank</td>
<td>26.7</td>
<td>31.8</td>
<td>13.2</td>
<td>0.0</td>
<td>18.9</td>
</tr>
</tbody>
</table>

Source: Author’s own work

The remainder of this section is concerned with the question of whether or not deprivation characteristics associated with social exclusion correspond to ‘seaside’ districts in general and ‘seaside with resort’ districts in particular. To assess whether there are true differences in deprivation level between seaside and non-seaside districts, the six local authority summary measures of multiple deprivation were recoded into national quartiles based on their rankings calculated in the respective Indices of Deprivation databases and cross-tabulations and Pearson chi-square analyses were undertaken. Cross tabulations of deprivation quartiles with district type as a binary variable are given in Appendix Tables A1–18. Results of these tests have been summarised within the forthcoming tables.

Although this section is concerned primarily with the districts defined as ‘seaside with resort’, it commences with a brief analysis of multiple deprivation in ‘seaside’ and ‘coastal’ districts. No significant differences were found between the two aforementioned district types as both exhibited higher levels of multiple deprivation than might be expected. As shown in Table 5.4, valid results were obtained with the 2004 data and some 2007 data on four of the six summary measures of multiple deprivation. When compared with ‘inland’ districts, ‘coastal’ and ‘seaside’ districts had higher levels of multiple deprivation, in which the focus is placed on the average rank of LSOA scores and average rank of LSOA ranks indicators of multiple deprivation. These results are significant at the $p = 0.05$ level. However, it is apparent from the data in Table 5.4 that there are stronger associations within ‘seaside’ districts, which indicates, albeit crudely, that they are experiencing generally higher levels of deprivation.
Furthermore, in terms of the income and employment indicators of deprivation, while the chi-square test did not show any significant differences in the case of ‘coastal’ districts, statistically significant associations were found with respect to ‘seaside’ districts. When compared with ‘inland’ districts, ‘seaside’ districts had higher income and employment deprivation levels.

Turning now to the evidence on whether deprivation characteristics associated with social exclusion correspond to the districts of ‘seaside with resort’, when compared with ‘seaside without resort’ and ‘coastal’ districts, and where the six summary district measures of deprivation were recoded into quartiles, the chi-square test results were invalid because the expected counts for the cells are very small. This problem, however, did not occur in the case of ‘inland’ districts. Indeed, analysis of multiple deprivation in ‘inland’ and ‘seaside with resorts’ districts revealed that there are statistically significant differences between the two district types. As Table 5.5 shows, the degree of multiple deprivation, as portrayed by the average rank of LSOA scores and average rank of LSOA ranks indicators, is generally higher in ‘seaside with resorts’ districts than in ‘inland’ ones. When compared with ‘inland’ districts, ‘seaside with resort’ districts also had more districts with LSOAs that contained pockets of severe deprivation.

The fact that there are statistically significant differences between ‘inland’ and ‘seaside with resort’ districts was further confirmed by collapsing both the upper two quartiles and the lower two quartiles (see Table 5.6). However, the rationale for recoding the data were because of the results in Table 5.5, which suggest there might be an association between district type (i.e., the districts ‘seaside with resort’ and ‘seaside without resort’) and deprivation level. Further analysis revealed that there are statistically significant differences between the two district types as ‘seaside with resort’ districts exhibited higher levels of multiple deprivation than might be expected. The most striking result to emerge from the data in Table 5.6 is that the effect sizes, as denoted by the value of phi, indicate there are stronger associations in ‘seaside without resort’ than in ‘inland’ districts. Thus, when compared with
‘seaside with resort’ districts, while ‘inland’ and ‘seaside without resort’ districts are experiencing generally lower levels of multiple deprivation, the magnitude of difference between ‘seaside with resort’ and ‘seaside without resort’ is more pronounced.

Given the two aforementioned district types are places apart in terms of level of multiple deprivation yet united by tourism-related employment at or above the national average, the differential incidence of multiple deprivation may be due to the nature of the seaside district itself. The seaside destinations in those districts that did not contain identifiable resorts have a population of less than 10,000 and all are therefore officially ‘rural’ settlements according to ONS definitions. It follows that the seaside resorts included in this study are significant urban areas in their own right. Thus, when taken together, these seaside resorts resemble an urban type and, as a result, the districts defined in this study as ‘seaside with resort’ share common characteristics with some inland districts that contain large urban centres, which may account for the greater variation in the levels of deprivation between the district types.

Having established that there are statistically significant differences in deprivation levels when comparing those districts defined as ‘seaside with resort’ with ‘seaside without resort’ and ‘inland’ districts, it is now necessary to examine the district level indicators of multiple deprivation within ‘seaside with resort’ districts. Table 5.7 shows ‘seaside with resort’ districts grouped ‘domain’ ranking and deprivation level. With respect to the average rank of LSOA scores measure, 30 out of 37 districts fell into the upper ranked half of all districts categorised as ‘most deprived’ and ‘above average’, while the remaining 7 districts fell into the ‘below average’ category. Thus, no districts exhibit a level of multiple deprivation in the lower quartile. Of those that fell into the ‘most deprived’ (MD) and ‘above average’ categories, ten were in Southeast England (MD, n=5), seven in the Southwest (MD, n=1), five in the Northwest (MD, n=2), four in the East (MD, n=1), two in the Northeast (MD, n=1) and one in both the East Midlands (MD, n=1) and the Yorkshire and the Humber (MD, n=0). Although it would seem at first glance that districts in the southern regions of England
and the Northwest region of England appear to be experiencing acute levels of multiple deprivation, this regional pattern may be explained by the fact that there are more resorts and therefore more incidences of multiple deprivation. When viewed against the total number of districts defined as ‘seaside with resorts’ located in each English region, the East (4/4), the Northeast (2/2), the East Midlands (1/1) and Yorkshire and the Humber (1/1) appear to be suffering more from multiple deprivation than the Southeast (10/11), the Northwest (5/6) and the Southwest (7/12). A similar regional distribution pattern is evident with regard to the average rank of LSOA ranks measure. Taken together, these findings suggest that all ‘seaside with resort’ districts in all regions, taking into account both deprived and less deprived LSOAs, as a whole are experiencing multiple deprivation.

In terms of both the extent rank and local concentration rank indicators of multiple deprivation, 29 out of 37 districts fell into the upper two quartiles. Regarding the extent rank, nine were in the Southeast (MD, n=2), seven in the Southwest (MD, n=0), five in the Northwest (MD, n=3), four in the East (MD, n=1), two in the Northeast (MD, n=1) and one in both the East Midlands (MD, n=0) and the Yorkshire and the Humber (MD, n=0). In contrast, the remaining eight districts fell into the ‘below average’ and ‘least deprived’ categories, with the majority (5) occurring in the Southwest, two in the Southeast, and one in the Northwest. With respect to the local concentration rank, nine were in the Southeast (MD, n=4), seven in the South west (MD, n=1), five were in the Northwest (MD, n=1), four in the East (MD, n=3), two in the Northeast (MD, n=1) and one in both the East Midlands (MD, n=0) and the Yorkshire and the Humber (MD, n=1). The previous extent rank figures given for the lower two quartiles also apply to the local concentration rank. Perhaps the most striking observation to emerge from the data here is that, in terms of extent, seven districts (in four of seven regions) populate the highest deprivation quartile whereas, in the case of local concentration, the corresponding figure is fourteen (in six of seven regions). Accordingly, it appears that the high levels of multiple deprivation in ‘seaside with resort’ districts is less widespread as it is spatially concentrated. These pockets of severe deprivation are to be found in numerous districts located in all but one of England’s coastal regions.
The analysis so far has focussed on those district-level measures which illustrate the degree, extent and local concentration of multiple deprivation. The results obtained on the scale of employment and income deprivation can be found in Table 5.7. Incidentally, the analysis reported in Table 5.7 is based on the most recent 2010 data. Results on a measure-by-measure basis, which include the analysis of 2004 and 2007 data, are given in Appendix Tables A19-24. The reader is reminded, though, that it is impossible to compare deprivation ranks over time, as there are less local authorities in the 2010 index than there were in 2007/04 due to the formation of unitary authorities in 2009. Thus, no meaningful time series analysis of the data could be undertaken. Another criticism to be levelled at the summary measures of multiple deprivation is that they conceal small pockets of deprivation in districts associated with the district types. For these reasons, attention now turns to the LSOA indices of deprivation and, in particular, the overall Index of Multiple Deprivation.
Table 5.4: P values of the Pearson’s chi-square test (Inland v Coastal; Inland v Seaside; Coastal v Seaside)

Source: Author’s own work

<table>
<thead>
<tr>
<th>Deprivation level Domain</th>
<th>Coastal</th>
<th>Inland</th>
<th>Seaside</th>
<th>Coastal</th>
<th>Seaside</th>
<th>Coastal</th>
<th>Seaside</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MD</td>
<td>AA</td>
<td>BA</td>
<td>LD</td>
<td>Sig-level (C.V)</td>
<td>MD</td>
<td>AA</td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>2004</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>0.043 (0.167)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.014 (0.190)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.018 (0.192)</td>
<td>I</td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>2004</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.032 (0.173)</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.003 (0.220)</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.012 (0.200)</td>
<td>S</td>
</tr>
<tr>
<td>Extent rank</td>
<td>2004</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.125 NS</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.053 (0.162)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.125 NS</td>
<td>I</td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>2004</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>0.026 (0.178)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.016 (0.187)</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>0.063 NS</td>
<td>S</td>
</tr>
<tr>
<td>Income rank</td>
<td>2004</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.337 NS</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>0.227 NS</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>0.471 NS</td>
<td>I</td>
</tr>
<tr>
<td>Employment rank</td>
<td>2004</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.140 NS</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.087 NS</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>0.289 NS</td>
<td>I</td>
</tr>
</tbody>
</table>

Note:
1) In this table as well as in all similar forthcoming tables within this chapter the yellow highlighted cells represent non-statistically significant relationships existed between the two variables. Furthermore, ‘invalid’ refers to instances where the expected value is too small due to low frequency of the observed count. The equals sign (=) indicates that both district types share the same percentage in the quartile and there is therefore no difference. MD ‘most deprived’, AA ‘above average’, BA ‘below average’, LD ‘least deprived’ denote quartiles 1-4 respectively.
2) Detailed results are available in Appendix Tables A1-9.
Table 5.5: P values of the Pearson’s chi-square test – ‘seaside with resort’ districts vis-à-vis inland, coastal and seaside without resort districts

Source: Author’s own work

<table>
<thead>
<tr>
<th>Deprivation level Domain</th>
<th>Inland</th>
<th>Coastal</th>
<th>Seaside (-Resorts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MD</td>
<td>AA</td>
<td>BA</td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>2004 S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007 S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2010 S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>2004 S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007 S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2010 S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td>Extent rank</td>
<td>2004 I</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007 I</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2010 I</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>2004 S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007 S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2010 S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td>Income rank</td>
<td>2004 I</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007 I</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2010 I</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td>Employment rank</td>
<td>2004 I</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2007 I</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>2010 I</td>
<td>S(+R)</td>
<td>I</td>
</tr>
</tbody>
</table>

Note:
1) In this table as well as in Tables 5.6 and 5.11 within this chapter the blue highlighted cells represent those districts defined in this study as ‘seaside with resort’ and where statistically significant results were detected.
2) Detailed results are available in Appendix Tables A10-18.
Table 5.6: P values of the Pearson’s chi-square test – ‘seaside with resort’ districts vis-à-vis inland, coastal and seaside without resort districts

Source: Author’s own work

<table>
<thead>
<tr>
<th>Deprivation level Domain</th>
<th>Inland</th>
<th></th>
<th>Coastal</th>
<th></th>
<th>Seaside (-Resorts)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MD</td>
<td>LD</td>
<td>Sig-level (Phi)</td>
<td>MD</td>
<td>LD</td>
<td>Sig-level (Phi)</td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>2004</td>
<td>S(+R)</td>
<td>1 0.000 (0.225)***</td>
<td>S(+R)</td>
<td>C 0.256 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>S(+R)</td>
<td>1 0.000 (0.238)***</td>
<td>S(+R)</td>
<td>C 0.677 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>S(+R)</td>
<td>1 0.000 (0.249)***</td>
<td>S(+R)</td>
<td>C 0.524 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>2004</td>
<td>S(+R)</td>
<td>1 0.000 (0.213)***</td>
<td>S(+R)</td>
<td>C 0.590 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>S(+R)</td>
<td>1 0.000 (0.240)***</td>
<td></td>
<td>= 0.976 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>S(+R)</td>
<td>1 0.000 (0.252)***</td>
<td>S(+R)</td>
<td>C 0.748 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Extent rank</td>
<td>2004</td>
<td>S(+R)</td>
<td>1 0.001 (0.186)***</td>
<td>S(+R)</td>
<td>C 0.759 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>S(+R)</td>
<td>1 0.003 (0.169)**</td>
<td>C</td>
<td>S(+R) 0.781 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>S(+R)</td>
<td>1 0.000 (0.218)***</td>
<td>S(+R)</td>
<td>C 0.384 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>2004</td>
<td>S(+R)</td>
<td>1 0.001 (0.186)***</td>
<td>S(+R)</td>
<td>C 0.759 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>S(+R)</td>
<td>1 0.001 (0.189)**</td>
<td>C</td>
<td>S(+R) 0.955 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>S(+R)</td>
<td>1 0.000 (0.218)***</td>
<td>S(+R)</td>
<td>C 0.384 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Income rank</td>
<td>2004</td>
<td>S(+R)</td>
<td>1 0.005 (0.160)**</td>
<td>S(+R)</td>
<td>C 0.441 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>S(+R)</td>
<td>1 0.006 (0.157)**</td>
<td>S(+R)</td>
<td>C 0.271 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>S(+R)</td>
<td>1 0.004 (0.168)**</td>
<td>S(+R)</td>
<td>C 0.270 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Employment rank</td>
<td>2004</td>
<td>S(+R)</td>
<td>1 0.012 (0.142)**</td>
<td>C</td>
<td>S(+R) 0.893 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>S(+R)</td>
<td>1 0.004 (0.164)**</td>
<td>S(+R)</td>
<td>C 0.935 NS</td>
<td>S(+R)</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>S(+R)</td>
<td>1 0.004 (0.171)**</td>
<td>S(+R)</td>
<td>C 0.451 NS</td>
<td>S(+R)</td>
</tr>
</tbody>
</table>
Table 5.7: Seaside with resort districts grouped ‘domain ranking’ and deprivation level, 2010

<table>
<thead>
<tr>
<th>Deprivation level Domain</th>
<th>Very deprived (Rank 1-81)</th>
<th>Above average (Rank 82-163)</th>
<th>Below average (Rank 164-245)</th>
<th>Least deprived (Rank 246-326)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av. rank of LSOA scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackpool</td>
<td>6 NW</td>
<td>Eastbourne</td>
<td>84 SE</td>
<td>Canterbury</td>
</tr>
<tr>
<td>Hastings</td>
<td>19 SE</td>
<td>Scarborough</td>
<td>85 Y&H</td>
<td>Teignbridge</td>
</tr>
<tr>
<td>Thanet</td>
<td>49 SE</td>
<td>Tendring</td>
<td>86 E</td>
<td>North Somerset</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>52 NE</td>
<td>West Somerset</td>
<td>90 SW</td>
<td>East Devon</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>54 E</td>
<td>Sefton</td>
<td>92 NW</td>
<td>Purbeck</td>
</tr>
<tr>
<td>Wirral</td>
<td>60 NW</td>
<td>Weymouth & Port.</td>
<td>94 SW</td>
<td>Christchurch</td>
</tr>
<tr>
<td>Torbay</td>
<td>61 SW</td>
<td>Shepway</td>
<td>97 SE</td>
<td>Fylde</td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>66 SE</td>
<td>Bournemouth</td>
<td>102 SW</td>
<td></td>
</tr>
<tr>
<td>East Lindsey</td>
<td>73 EM</td>
<td>Southend-on-Sea</td>
<td>106 E</td>
<td></td>
</tr>
<tr>
<td>Portsmouth</td>
<td>76 SE</td>
<td>Cornwall</td>
<td>110 SW</td>
<td></td>
</tr>
<tr>
<td>Waveney</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lancaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isle of Wight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dover</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northumberland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Devon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rother</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedgemoor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornwall</td>
<td>82 SW</td>
<td>Scarborough</td>
<td>83 Y&H</td>
<td>Teignbridge</td>
</tr>
<tr>
<td>Weymouth & Port.</td>
<td>88 SW</td>
<td>Shepway</td>
<td>89 SE</td>
<td>Wyre</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>96 SW</td>
<td></td>
<td></td>
<td>Purbec</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>106 SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waveney</td>
<td>112 E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sefton</td>
<td>114 NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>117 E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dover</td>
<td>122 SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Devon</td>
<td>126 NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rother</td>
<td>132 SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>144 NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arun</td>
<td>151 SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedgeomoor</td>
<td>154 SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canterbury</td>
<td>163 SE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Av. rank of LSOA ranks | | | | |
| Blackpool | 10 NW | | | |
| Hastings | 23 SE | | | |
| West Somerset | 45 SW | | | |
| South Tyneside | 47 NE | | | |
| Torbay | 49 SW | | | |
| Thanet | 50 SE | | | |
| Great Yarmouth | 57 E | | | |
| East Lindsey | 58 EM | | | |
| Brighton and Hove | 67 SE | | | |
| Eastbourne | 68 SE | | | |
| Portsmouth | 76 SE | | | |
| Tendring | 81 E | | | |</p>
<table>
<thead>
<tr>
<th>Deprivation level Domain</th>
<th>Very deprived (Rank 1-81)</th>
<th>Above average (Rank 82-163)</th>
<th>Below average (Rank 164-245)</th>
<th>Least deprived (Rank 246-326)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackpool</td>
<td>16 NW</td>
<td>Torbay 82 SW</td>
<td>Isle of Wight 165 SE</td>
<td>East Devon 250 SW</td>
</tr>
<tr>
<td>Hastings</td>
<td>24 SE</td>
<td>Brighton and Hove 84 SE</td>
<td>Canterbury 170 SE</td>
<td>Purbeck 294 SW</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>39 NE</td>
<td>Weymouth & Port. 90 SW</td>
<td>West Somerset 173 SW</td>
<td></td>
</tr>
<tr>
<td>Wirral</td>
<td>54 NW</td>
<td>East Lindsey 91 EM</td>
<td>Teignbridge 192 SW</td>
<td></td>
</tr>
<tr>
<td>Thanet</td>
<td>57 SE</td>
<td>Portsmouth 93 SE</td>
<td>Christchurch 197 SW</td>
<td></td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>64 E</td>
<td>Southend-on-Sea 97 E</td>
<td>Fylde 218 NW</td>
<td></td>
</tr>
<tr>
<td>Sefton</td>
<td>80 NW</td>
<td>Scarborough 99 Y&H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eastbourne 101 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lancaster 104 NW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bournemouth 105 SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tending 112 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shepway 120 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waveney 123 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northumberland 124 NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dover 131 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyre 135 NW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedgemoor 148 SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rother 153 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cornwall 154 SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>North Devon 157 SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arun 158 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>North Somerset 159 SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackpool</td>
<td>1 NW</td>
<td>Northumberland 87 NE</td>
<td>Canterbury 170 SE</td>
<td>East Devon 246 SW</td>
</tr>
<tr>
<td>Wirral</td>
<td>14 NW</td>
<td>Waveney 92 E</td>
<td>Isle of Wight 178 SE</td>
<td>Purbeck 294 SW</td>
</tr>
<tr>
<td>Hastings</td>
<td>19 SE</td>
<td>East Lindsey 94 EM</td>
<td>West Somerset 183 SW</td>
<td></td>
</tr>
<tr>
<td>Thanet</td>
<td>26 SE</td>
<td>Bournemouth 96 SW</td>
<td>Teignbridge 192 SW</td>
<td></td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>30 E</td>
<td>Weymouth & Port. 99 SW</td>
<td>Christchurch 201 SW</td>
<td></td>
</tr>
<tr>
<td>Sefton</td>
<td>43 NW</td>
<td>Wyre 101 NW</td>
<td>Fylde 220 NW</td>
<td></td>
</tr>
<tr>
<td>Portsmouth</td>
<td>52 SE</td>
<td>Shewype 102 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>54 SE</td>
<td>North Somerset 115 SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scarborough</td>
<td>56 Y&H</td>
<td>Eastbourne 116 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lancaster</td>
<td>59 NW</td>
<td>North Devon 146 SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torbay</td>
<td>61 SW</td>
<td>Dover 147 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>73 E</td>
<td>Arun 148 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tending</td>
<td>74 E</td>
<td>Cornwall 152 SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Tyneside</td>
<td>77 NE</td>
<td>Sedgemoor 153 SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rother 155 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deprivation level Domain</td>
<td>Very deprived (Rank 1-81)</td>
<td>Above average (Rank 82-163)</td>
<td>Below average (Rank 164-245)</td>
<td>Least deprived (Rank 246-326)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Income rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornwall</td>
<td>9 SW</td>
<td>Portsmouth 84 SE</td>
<td>Sedge Moor 165 SW</td>
<td>Weymouth & Port. 255 SW</td>
</tr>
<tr>
<td>Wirral</td>
<td>22 NW</td>
<td>Southend-on-Sea 88 E</td>
<td>Wyre 174 NW</td>
<td>Fylde 280 NW</td>
</tr>
<tr>
<td>Sefton</td>
<td>45 NW</td>
<td>Thanet 95 SE</td>
<td>North Devon 190 SW</td>
<td>Christchurch 308 SW</td>
</tr>
<tr>
<td>Northumberland</td>
<td>53 NE</td>
<td>Bournemouth 96 SW</td>
<td>East Devon 192 SW</td>
<td>West Somerset 311 SW</td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>57 SE</td>
<td>Torbay 97 SW</td>
<td>Rother 202 SE</td>
<td>Purbeck 318 SW</td>
</tr>
<tr>
<td>Blackpool</td>
<td>74 NW</td>
<td>Tendring 99 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Tyneside</td>
<td>77 NE</td>
<td>East Lindsey 107 EM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isle of Wight 116 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hastings 124 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Great Yarmouth 126 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lancaster 127 NW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waveney 128 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arun 131 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scarborough 133 Y&H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canterbury 137 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shepway 144 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dover 153 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eastbourne 158 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teignbridge 162 SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornwall</td>
<td>8 SW</td>
<td>Portsmouth 88 SE</td>
<td>Sedge Moor 167 SW</td>
<td>Fylde 253 NW</td>
</tr>
<tr>
<td>Wirral</td>
<td>10 NW</td>
<td>Southend-on-Sea 92 E</td>
<td>Teignbridge 171 SW</td>
<td>West Somerset 313 SW</td>
</tr>
<tr>
<td>Sefton</td>
<td>26 NW</td>
<td>Bournemouth 93 SW</td>
<td>East Devon 204 SW</td>
<td>Christchurch 315 SW</td>
</tr>
<tr>
<td>Northumberland</td>
<td>29 NE</td>
<td>North Somerset 98 SW</td>
<td>North Devon 205 SW</td>
<td>Purbeck 322 SW</td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>48 SE</td>
<td>Torbay 99 SW</td>
<td>Rother 218 SE</td>
<td></td>
</tr>
<tr>
<td>South Tyneside</td>
<td>62 NE</td>
<td>Thetford 101 SE</td>
<td>Weymouth & Port. 219 SW</td>
<td></td>
</tr>
<tr>
<td>Blackpool</td>
<td>63 NW</td>
<td>East Lindsey 104 EM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tendring 107 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lancaster 113 NW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isle of Wight 114 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hastings 126 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Great Yarmouth 127 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waveney 134 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scarborough 135 Y&H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arun 145 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canterbury 146 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shepway 154 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dover 157 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyre 162 NW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eastbourne 163 SE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.1.2 LSOA level indices of deprivation

As a second step, in order to provide further insight into the differences in the levels of multiple deprivation between seaside and non-seaside areas, the incidence of the LSOA-level domain variables and overall Index of Multiple Deprivation was examined for each of the district types in England. To enable comparison between the indices, it has been necessary to use pre-2009 local authority boundaries. LSOAs (a sub-ward geography averaging approximately 1,500 people) were matched to their respective districts and then grouped depending on their correspondence with type of district. Table 5.8 shows the breakdown of LSOAs according to district type. Overall, there are 32,482 LSOAs in England. The vast majority of LSOAs were classified as ‘inland’. Of those LSOAs that were categorised as ‘seaside’, 9.7% were in ‘seaside with resort’ districts.

Table 5.8: Data profile of ‘inland’, ‘coastal’ and ‘seaside’ local authority districts

<table>
<thead>
<tr>
<th>District type</th>
<th>Inland</th>
<th>Coastal</th>
<th>Seaside</th>
<th>Seaside (-R)</th>
<th>Seaside (+R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSOAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>26,048</td>
<td>2,107</td>
<td>4,327</td>
<td>1,186</td>
<td>3,141</td>
</tr>
<tr>
<td>Percent</td>
<td>80.2</td>
<td>6.5</td>
<td>13.3</td>
<td>3.6</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Source: Author’s own work

In a similar fashion to the previous section, first, univariate analysis is employed to illuminate geographical variations in the incidence of multiple deprivation. The section then goes on to analyse the extent to which deprivation characteristics associated with social exclusion occur within ‘seaside’ districts and ‘seaside with resort’ districts in particular. Finally, in relation to the overall Index of Multiple Deprivation, it is useful to consider the distribution of LSOAs across deprivation deciles, in order to complete the general overview.

The geographic extent of multiple deprivation is greater in all coastal district types than in ‘inland’ districts. It can be seen from the data in Table 5.9 that less than 50% of LSOAs in ‘inland’ districts are among England’s most deprived fifty per cent. The corresponding figures for ‘seaside’ districts and ‘coastal’ districts are 52.5% and 54.1%
respectively. This pattern is not dissimilar to that which emerged from the data in Table 5.2. However, the LSOAs of coastal districts do not exhibit the highest deprivation levels on all of the domains. In terms of the barriers to housing and services and living environment indicators of deprivation, ‘seaside’ districts contained a greater share of LSOAs in England’s most deprived fifty percent. With respect to the crime domain, ‘inland’ districts had a higher proportion of high crime environments.

The LSOAs associated with ‘seaside with resort’ districts had the greatest incidence of multiple deprivation at 57.1%. In fact, LSOAs that correspond to ‘seaside with resort’ districts, when compared with ‘inland’, ‘coastal’ and ‘seaside without resort’, score worse on the domains of income, employment, health, and living environment. However, the localities within ‘seaside with resort’ districts appear depressed particularly with regard to health and disability (62.0%) and employment (61.9%). Another interesting observation is that ‘seaside with resort’ districts score overwhelmingly worse than ‘seaside without resort’ districts, on all measures except for that of barriers to housing and services. It is important to note, however, that the difference is not markedly so. That said, when examining the proportion of LSOAs falling within England’s worst 25 per cent, it does certainly seem that access to housing and services is a more pressing issue within ‘seaside without resort’ districts (see Table 5.10).

Table 5.9: Per cent of LSOAs in England’s most deprived 50 per cent, 2010

<table>
<thead>
<tr>
<th>Deprivation domain</th>
<th>Inland</th>
<th>Coastal</th>
<th>Seaside</th>
<th>Seaside (-R)</th>
<th>Seaside (+R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Index of M.D.</td>
<td>49.3</td>
<td>54.1</td>
<td>52.5</td>
<td>40.2</td>
<td>57.1</td>
</tr>
<tr>
<td>Income</td>
<td>49.6</td>
<td>52.0</td>
<td>51.6</td>
<td>38.1</td>
<td>56.7</td>
</tr>
<tr>
<td>Employment</td>
<td>48.4</td>
<td>57.9</td>
<td>55.8</td>
<td>39.7</td>
<td>61.9</td>
</tr>
<tr>
<td>Health</td>
<td>48.7</td>
<td>58.5</td>
<td>53.8</td>
<td>32.0</td>
<td>62.0</td>
</tr>
<tr>
<td>Education</td>
<td>48.5</td>
<td>63.1</td>
<td>52.8</td>
<td>46.3</td>
<td>55.3</td>
</tr>
<tr>
<td>Housing / Services</td>
<td>50.7</td>
<td>36.8</td>
<td>52.2</td>
<td>54.2</td>
<td>51.4</td>
</tr>
<tr>
<td>Crime and disorder</td>
<td>53.9</td>
<td>41.6</td>
<td>30.6</td>
<td>17.3</td>
<td>35.6</td>
</tr>
<tr>
<td>Environment</td>
<td>50.4</td>
<td>36.7</td>
<td>54.3</td>
<td>48.6</td>
<td>56.5</td>
</tr>
</tbody>
</table>

Source: Author’s own work
From the data in Table 5.10, it is apparent that inland areas are remarkably consistent across all aspects of deprivation. All deprivation domains are in the range 24.6 – 27.7 per cent. In contrast, there is more variation in the nature of social deprivation within each coastal district type. For instance, poor education, health and employment are greater problems in ‘coastal’ districts compared to other aspects of deprivation, while living environment and housing are less prevalent. In the case of ‘seaside’ districts, when compared to other aspects of deprivation, poor quality of people’s immediate surroundings both within and outside the home, poor access to housing and services and high unemployment are considerable issues, while crime is less significant. More specifically, with regard to those districts defined as ‘seaside without resorts’, poor access to housing and services (followed by poor quality of the local environment) presents as an inordinate problem and, in the case of ‘seaside with resorts’, poor living environment, high unemployment and bad health are substantial issues. Overall, these results suggest that the problems of bad health and low employment are common to both ‘seaside with resorts’ and ‘coastal’ districts, whereas deprivation in the quality of the local environment is more specific to seaside type districts. Otherwise, there appear few similarities in the type and level of deprivation among the three coastal district types.

To explore whether there are “true” differences in the extent of deprivation across domains between ‘seaside with resort’ districts and other district types (i.e., ‘inland’, ‘coastal’ and ‘seaside without resort’), 72 Pearson’s chi-square tests were carried out to investigate the
significance of the observed frequencies of LSOAs in each deprivation quartile in relation to the expected values, in order to determine whether the observed cases fit the expected distribution. The results show that all but one of the 72 tests are statistically very strongly significant at the $p = 0.001$ level. Full results of the chi-square tests performed are available in Appendix Tables A25-48. These results are summarised in Table 5.11 and below.

Table 5.11 shows the channels through which deprivation might affect social exclusion in the following three types of local authority districts: Seaside without resort, Coastal, Inland. Furthermore, the table shows the results from the comparison of the observed and expected cell counts. That is to say, the district type which had more LSOAs (by deprivation quartile) than might be expected. It can be seen from the table that, when compared to ‘seaside without resort’ districts, ‘seaside with resort’ districts had higher levels of deprivation than might be expected across the majority of the domains of deprivation. The only exception was the barriers to housing and services domain as, in this case, the results were reversed. LSOAs within ‘seaside with resort’ districts had better than expected access to housing and services. Another interesting observation is that ‘seaside with resort’ districts are characterised by strong over-representation of LSOAs with ‘high’ and ‘middling’ levels of crime deprivation (i.e., quartiles 1-3). However, when compared to ‘coastal’ districts, ‘seaside with resort’ districts had lower crime levels and more districts with LSOAs that contained very high levels of deprivation in terms of both the living environment and barriers to housing and services domains of multiple deprivation. In relation to inland districts, ‘seaside with resort’ districts are characterised by strong over-representation of LSOAs with ‘high’ and ‘middling’ levels of deprivation in terms of the following three domains: employment; health and disability; and education, skills and training (in order of their prevalence).
Table 5.11: P values of the Pearson’s chi-square test – ‘seaside with resort’ LSOAs vis-à-vis inland, coastal and seaside without resort LSOAs

Source: Author’s own work

<table>
<thead>
<tr>
<th>Deprivation level Domain</th>
<th>Inland</th>
<th>Coastal</th>
<th>Seaside (-Resorts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MD</td>
<td>AA</td>
<td>BA</td>
</tr>
<tr>
<td>Overall IMD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2007</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2010</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2007</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2010</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>S(+R)</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2007</td>
<td>S(+R)</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2010</td>
<td>S(+R)</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Health</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2007</td>
<td>S(+R)</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2010</td>
<td>S(+R)</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Living Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td>2007</td>
<td>S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td>2010</td>
<td>S(+R)</td>
<td>S(+R)</td>
<td>I</td>
</tr>
<tr>
<td>Housing / Services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>S(+R)</td>
<td>I</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2007</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2010</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2007</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2010</td>
<td>I</td>
<td>S(+R)</td>
<td>S(+R)</td>
</tr>
<tr>
<td>Crime and disorder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>I</td>
<td>I</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2007</td>
<td>I</td>
<td>I</td>
<td>S(+R)</td>
</tr>
<tr>
<td>2010</td>
<td>I</td>
<td>I</td>
<td>S(+R)</td>
</tr>
</tbody>
</table>
The analysis reported above is based on the proportion of LSOAs falling within England’s worst 25 per cent. Results may differ at different levels of deprivation. The forthcoming figures therefore depict results for the overall Index of Multiple Deprivation by deprivation deciles. Detailed results of the per cent of LSOAs in England’s most deprived 10 per cent and other deciles are given in Appendix Table A49. However, in order to facilitate the comparison between the district types, the decile results are presented here separately: first, for the three major district categories (i.e., ‘inland’, ‘coastal’, ‘seaside’); and second, for the different coastal district types (i.e., ‘coastal’, ‘seaside with resort’, ‘seaside without resort’).

Figure 5.1 depicts the decile distribution of LSOAs across the three main district types of England. In the decile distribution, for England as a whole, there are 10% of LSOAs in each decile. If those districts that are defined as ‘seaside’ are reflective of England as a whole, they will have a similar proportion of LSOAs in each decile. If there are more than 10% of LSOAs in the most deprived decile then the ‘seaside’ districts are likely to be more deprived than England as a whole. If there are less than 10% of LSOAs in the most deprived decile, then the ‘seaside’ districts are likely to be less deprived than England as a whole. However, it is the overall pattern in the decile distribution that will determine whether the districts have similar or different levels of multiple deprivation than England in general.

It is apparent from Figure 5.1 that, while ‘inland’ districts contain a greater share of LSOAs in England’s most deprived 10 per cent, LSOAs with very low levels of deprivation are also more prevalent in inland districts. In other words, although ‘seaside’ districts contain few LSOAs of extreme deprivation (i.e., deciles 1-2), they have few areas of very low deprivation. Rather, ‘seaside’ districts are characterised by strong over-representation of LSOAs with ‘lowish’ and ‘middling’ levels of deprivation (i.e., deciles 4-8).
Figure 5.1: Distribution of deprivation across ‘inland’, ‘coastal’ and ‘seaside’ districts, 2010

Source: Author’s own work

Figure 5.2 shows the decile distribution of LSOAs across all three coastal district types. It can be seen that the districts defined in this study as ‘seaside with resort’ contain a higher proportion of LSOAs (10%) in the most deprived decile than ‘coastal’ (9.7%) and ‘seaside without resort’ (3.3%) districts. However, although the level of extreme multiple deprivation (i.e., deciles 1-2) in ‘seaside with resort’ districts is broadly similar with that of England as a whole, it is noticeable that, when viewed against other district types, ‘seaside with resort’ districts contain fewer LSOAs with very low levels of deprivation. Indeed, this district type had smaller proportions of LSOAs in the least deprived deciles (i.e., deciles 8-10). Another interesting finding is that there is a general downward trend, with a greater proportion of LSOAs in the fifth decile (13.6%) compared with the least deprived decile (3%). The two other district types followed broadly the same pattern, especially ‘seaside without resort’ districts. Overall, these results show that, while ‘seaside with resort’ and coastal’ districts share similar levels of extreme multiple deprivation on a par with that of England, multiple deprivation varies considerably in the two seaside district types. However, although the overall deprivation pattern for both types of seaside district was not consistent across all deciles, ‘seaside with resort’ districts had a higher proportion of LSOAs in the most deprived decile.

202
More in-depth examination of the overall index of multiple deprivation within ‘seaside with resort’ districts revealed that, of the 39 districts, 30 have at least one LSOA in the most deprived 10% of areas nationally (see Table 5.12). Thus, more than three quarters (77 per cent) of the districts contained localities that were extremely deprived. Ten of the 30 local authority districts are located in the South East region, eight in the South West, five in the North West, four in the East, with the other three districts located in the North East, Yorkshire and the Humber and the East Midlands. However, although it may appear at first glance that the Southeast ‘seaside with resort’ districts appear to be suffering more from severe multiple deprivation, when viewed against the total number of LSOAs in the most deprived ten per cent for ‘seaside with resort’ districts as a whole, this number being 314, the Northwest (n=134, 42.7%) had the highest proportion of LSOAs in the most deprived 10% and, as such, these districts contain more of the LSOAs with the very highest levels of multiple deprivation in England. Second in rank is the Southeast (n=79, 25.2%), which is followed by the Southwest (n=41, 13.1%), the East (n=34, 10.8%), the Northeast (n=11, 3.5%), Yorkshire and the Humber (n=8, 2.5%) and the East Midlands (n=7, 2.2%). Indeed, the Northwest district of Blackpool was the local authority with the highest proportion of LSOAs in the most deprived

Figure 5.2: Distribution of deprivation across ‘coastal’, ‘seaside with resort’ and ‘seaside without resort’ districts, 2010

Source: Author’s own work
decile of the Index of Multiple Deprivation in both 2004 and 2010. Wirral, also in the North West, is the local authority with the largest number of LSOAs that are amongst the most deprived in 2010, this was also the case in 2004.

Perhaps the most striking result to emerge from the data in Table 5.12 is that, of the 30 ‘seaside with resort’ districts, four have fewer LSOAs amongst the most deprived decile in 2010 than in 2004. Moreover, in relation to England, in 2004 the 30 local authorities with the highest proportions of deprived LSOAs accounted for 259 (8%) of the most deprived decile, which has risen to 314 (10%) in 2010. The number of local authorities with at least one LSOA in the most deprived decile in 2010 is 30 (8.5%), out of 354 authorities, compared to 28 (7.9%) in 2004.
Table 5.12: Seaside with resort districts with the highest proportion of their LSOAs in the most deprived decile of Index of Multiple Deprivation 2010 and change since 2004

<table>
<thead>
<tr>
<th>District</th>
<th>Region</th>
<th>All LSOAs in district</th>
<th>IMD 2010</th>
<th>Change from 2004</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LSOAs in the most deprived 10%</td>
<td>% of LSOAs falling in the most deprived 10%</td>
<td>Number of least deprived LSOAs</td>
</tr>
<tr>
<td>Blackpool</td>
<td>NW</td>
<td>94</td>
<td>35</td>
<td>37.2</td>
<td>10</td>
</tr>
<tr>
<td>Hastings</td>
<td>SE</td>
<td>53</td>
<td>15</td>
<td>28.3</td>
<td>3</td>
</tr>
<tr>
<td>Wirral</td>
<td>NW</td>
<td>207</td>
<td>48</td>
<td>23.2</td>
<td>-4</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>E</td>
<td>61</td>
<td>13</td>
<td>21.3</td>
<td>2</td>
</tr>
<tr>
<td>Sefton</td>
<td>NW</td>
<td>190</td>
<td>35</td>
<td>18.4</td>
<td>-2</td>
</tr>
<tr>
<td>Thanet</td>
<td>SE</td>
<td>84</td>
<td>14</td>
<td>16.7</td>
<td>4</td>
</tr>
<tr>
<td>Torbay</td>
<td>SW</td>
<td>89</td>
<td>12</td>
<td>13.5</td>
<td>8</td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>SE</td>
<td>164</td>
<td>19</td>
<td>11.6</td>
<td>5</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>SE</td>
<td>123</td>
<td>14</td>
<td>11.4</td>
<td>1</td>
</tr>
<tr>
<td>Scarborough</td>
<td>Y&H</td>
<td>71</td>
<td>8</td>
<td>11.3</td>
<td>1</td>
</tr>
<tr>
<td>Lancaster</td>
<td>NW</td>
<td>89</td>
<td>10</td>
<td>11.2</td>
<td>2</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>NE</td>
<td>103</td>
<td>11</td>
<td>10.7</td>
<td>-9</td>
</tr>
<tr>
<td>Weymouth and Portland</td>
<td>SW</td>
<td>39</td>
<td>4</td>
<td>10.3</td>
<td>3</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>SW</td>
<td>107</td>
<td>10</td>
<td>9.3</td>
<td>4</td>
</tr>
<tr>
<td>East Lindsey</td>
<td>EM</td>
<td>80</td>
<td>7</td>
<td>8.8</td>
<td>2</td>
</tr>
<tr>
<td>Wyre</td>
<td>NW</td>
<td>69</td>
<td>6</td>
<td>8.7</td>
<td>3</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>SE</td>
<td>59</td>
<td>5</td>
<td>8.5</td>
<td>4</td>
</tr>
<tr>
<td>Southend-on-sea</td>
<td>E</td>
<td>107</td>
<td>9</td>
<td>8.4</td>
<td>4</td>
</tr>
<tr>
<td>Tendring</td>
<td>E</td>
<td>90</td>
<td>7</td>
<td>7.8</td>
<td>3</td>
</tr>
<tr>
<td>North Somerset</td>
<td>SW</td>
<td>124</td>
<td>9</td>
<td>7.3</td>
<td>4</td>
</tr>
<tr>
<td>Waveney</td>
<td>E</td>
<td>73</td>
<td>5</td>
<td>6.8</td>
<td>0</td>
</tr>
<tr>
<td>Shepway</td>
<td>SE</td>
<td>65</td>
<td>4</td>
<td>6.2</td>
<td>1</td>
</tr>
<tr>
<td>Penwith</td>
<td>SW</td>
<td>38</td>
<td>2</td>
<td>5.3</td>
<td>0</td>
</tr>
<tr>
<td>North Devon</td>
<td>SW</td>
<td>58</td>
<td>2</td>
<td>3.4</td>
<td>0</td>
</tr>
<tr>
<td>Rother</td>
<td>SE</td>
<td>58</td>
<td>2</td>
<td>3.4</td>
<td>2</td>
</tr>
<tr>
<td>Arun</td>
<td>SE</td>
<td>94</td>
<td>3</td>
<td>3.2</td>
<td>3</td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>SE</td>
<td>68</td>
<td>2</td>
<td>2.9</td>
<td>1</td>
</tr>
<tr>
<td>Carrick</td>
<td>SW</td>
<td>58</td>
<td>1</td>
<td>1.7</td>
<td>1</td>
</tr>
<tr>
<td>Restormel</td>
<td>SW</td>
<td>64</td>
<td>1</td>
<td>1.6</td>
<td>-1</td>
</tr>
<tr>
<td>Dover</td>
<td>SE</td>
<td>67</td>
<td>1</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>Berwick-upon-Tweed</td>
<td>NE</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Canterbury</td>
<td>SE</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Christchurch</td>
<td>SW</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>East Devon</td>
<td>SW</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fylde</td>
<td>NW</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>SE</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Purbeck</td>
<td>SW</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Teignbridge</td>
<td>SW</td>
<td>84</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>West Somerset</td>
<td>SW</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Seaside districts</td>
<td></td>
<td>3,141</td>
<td>314</td>
<td>10</td>
<td>55</td>
</tr>
</tbody>
</table>

Note: Further summaries of the 2010, 2007 and 2004 overall Index of Multiple Deprivation are presented in Appendix Tables A50-52.

Source: Author’s own work
Section 5.1 of this chapter has sought to provide a factual overview for understanding multiple deprivation within ‘seaside with resort’ districts by comparing such districts, as a whole, to other district types in England. ‘Inland’, ‘coastal’ and ‘seaside without resort’ districts were used here in order to provide an understanding of ‘seaside with resort’ districts relative status nationally. The intention was not merely to assess how deprivation varies across different types of district, but to ascertain whether multiple deprivation corresponds to ‘seaside with resort’ districts and identify the districts which were experiencing significant problems.

Statistically significant differences in the level of deprivation across each of the summary indicators of multiple deprivation were observed when the upper and lower quartiles were combined (section 5.1.1). The degree, extent and local concentration of multiple deprivation was significantly lower in ‘inland’ and ‘seaside without resort’ districts than in ‘seaside with resort’ districts. However, the differences between ‘seaside with resort’ and ‘coastal’ districts were not statistically significant as both district types exhibited higher levels of multiple deprivation than might be expected. Further analysis revealed that all districts in all regions, taking into account both deprived and less deprived LSOAs, as a whole are experiencing multiple deprivation.

With respect to the LSOA level indices of deprivation (section 5.1.2), as above, when the ‘most deprived’ and ‘above’ average quartiles were combined, ‘coastal’ districts and ‘seaside with resort’ districts both exhibited higher levels of deprivation than might be expected. The geographic extent of multiple deprivation is greater in ‘seaside with resort’ districts than in other district types, although this result changes when looking at the upper quartile. Here, while marginal, coastal and inland districts have a higher proportion of deprived areas than ‘seaside with resort’ districts. Perhaps the most striking finding to emerge from the data is that the overall level of multiple deprivation and the level across each of the
separate domains of deprivation are of similar magnitude in inland districts. In contrast, there is more variation in the nature of social deprivation across each type of coastal district. These results would seem to suggest that such local authorities face different types of deprivation. However, what can be said with a greater degree of certainty is, some aspects of deprivation are worse in ‘seaside with resort’ districts than other district types. In particular, deprivation of the quality of people’s immediate surroundings both within and outside the home is more of an issue in ‘seaside with resort’ districts. Other dominant aspects of deprivation include, in order of their prevalence, low employment and poor health. The inferential statistics results revealed that higher levels of deprivation are associated with seaside districts that contain sizeable resorts as opposed to those seaside districts with smaller destinations. Moreover, these results indicate that, ‘seaside with resort’ districts, despite their high levels of multiple deprivation, actually compare quite favourably to coastal and inland districts on some but not all domains of deprivation. Looking at national deciles for the index of multiple deprivation, however, a disturbing result emerged. When viewed against other district types, ‘seaside with resort’ districts contained a greater share of LSOAs in England’s most deprived 10 per cent and had fewer LSOAs with very low levels of deprivation.

The results of the district-level analysis provide a useful overview of the intensity and distribution of multiple deprivation in England, especially in coastal areas. However, the main goal of Section 5.1 was to determine whether multiple deprivation corresponds to ‘seaside with resort’ districts. It is clear from the results obtained from the analysis of the Indices of Deprivation data and presented here that multiple deprivation is a problem in such districts. Indeed, the results indicate that ‘seaside with resort’ districts are on average more acutely affected by multiple deprivation than ‘inland’, ‘coastal’ and ‘seaside without resort’ districts. The majority of districts defined as ‘seaside with resort’ are experiencing high levels of multiple deprivation. The form of multiple deprivation is, on average, as much widespread as it is concentrated, although this result differs when considering the upper quartile as a level of analysis. Here, ‘seaside with resort’ districts score overwhelmingly worse on the measure of local concentration.
Having explored some of the general characteristics of multiple deprivation in ‘seaside with resort’ districts at a general level in relation to other district types, the intention now is to take a detailed consideration of ‘seaside with resort’ districts at the local level. The next section therefore examines patterns of deprivation at the lower super output level within ‘seaside with resort’ districts, in order to establish the extent to which characteristics associated with social exclusion occur within seaside resorts.

5.2 Lower-level super output area analysis

The main aim of the analyses presented in this section is to establish the extent to which deprivation characteristics associated with social exclusion occur within seaside resorts and to ascertain the nature and severity of these characteristics. In pursuit of this goal, first, all lower level super output areas within each ‘seaside with resort’ district were categorised as ‘resort’ or ‘other’ depending on their correspondence with identifiable resort areas. The outcome of this exercise was that a total of 3,141 LSOAs comprised the 37 English ‘seaside with resort’ districts, of which 1,686 corresponded directly to 58 identifiable English seaside resorts and were coded as ‘resort LSOAs’, while the other 1,455 were labelled, ‘other LSOAs’. Second, the overall Index of Multiple Deprivation and the seven indices of deprivation were recoded into national quartiles based on their rankings calculated in the respective Indices of Deprivation databases. Third, cross-tabulations and Pearson chi-square analyses against all of the seaside district’s ‘resort’ and ‘other’ LSOAs were undertaken so that their association with deprivation may be ascertained. Full results of the chi-square tests performed are available in Appendix Tables A53-60. These results are summarised in Table 5.13. It is apparent from this table that all 24 tests are statistically very strongly significant at the $p = 0.001$ level.
Examination of multiple deprivation at small area level within this study’s 39 ‘seaside with resort’ districts found that there are significant differences between the two settlement types as ‘resort’ areas exhibited higher levels of multiple deprivation than might be expected. In 2010, a quarter of LSOAs in the sample fell within the upper quartile, but for ‘resort’ LSOAs the figure is higher at 30.8% and for ‘other’ LSOAs it is lower at 17.2%. Furthermore, the results, as shown in Table 5.13, indicate that the highest levels of deprivation, in terms of six out of seven aspects of disadvantage related to multiple deprivation, are more likely to be associated with seaside ‘resort LSOAs’ as opposed to ‘other LSOAs’ within the seaside districts. The only exception concerned the barriers to housing and services domain, which measures both the financial accessibility to housing and the physical accessibility to key local services including general practitioner premises, primary schools, post office branches and

<table>
<thead>
<tr>
<th>Deprivation level Domain</th>
<th>MD (R)</th>
<th>AA (R)</th>
<th>BA (O)</th>
<th>LD (O)</th>
<th>Sig-level (C.V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall IMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.167)</td>
</tr>
<tr>
<td>2007</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.165)</td>
</tr>
<tr>
<td>2010</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.179)</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.200)</td>
</tr>
<tr>
<td>2007</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.193)</td>
</tr>
<tr>
<td>2010</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.204)</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.190)</td>
</tr>
<tr>
<td>2007</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.211)</td>
</tr>
<tr>
<td>2010</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.216)</td>
</tr>
<tr>
<td>Health and disability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.223)</td>
</tr>
<tr>
<td>2007</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.254)</td>
</tr>
<tr>
<td>2010</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.274)</td>
</tr>
<tr>
<td>Living environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.117)</td>
</tr>
<tr>
<td>2007</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.103)</td>
</tr>
<tr>
<td>2010</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.096)</td>
</tr>
<tr>
<td>Barriers to housing and services</td>
<td>O</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>0.000 (0.116)</td>
</tr>
<tr>
<td>2004</td>
<td>O</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>0.000 (0.185)</td>
</tr>
<tr>
<td>2007</td>
<td>O</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>0.000 (0.173)</td>
</tr>
<tr>
<td>2010</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>0.000 (0.090)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.083)</td>
</tr>
<tr>
<td>2007</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.083)</td>
</tr>
<tr>
<td>2010</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>O</td>
<td>0.000 (0.099)</td>
</tr>
<tr>
<td>Crime and disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>0.000 (0.244)</td>
</tr>
<tr>
<td>2007</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>0.000 (0.277)</td>
</tr>
<tr>
<td>2010</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>O</td>
<td>0.000 (0.298)</td>
</tr>
</tbody>
</table>

Note: The blue highlighted cells represent those LSOAs defined in this study as ‘resort’. O = ‘other LSOAs’. Source: Author's own work
supermarket/convenience stores. When compared with ‘other’ LSOAs, areas within the seaside resorts had better than expected access to such facilities and housing. This result is not surprising given that, in many cases, the ‘other LSOAs’ within ‘seaside’ districts were located in remote rural areas. Notwithstanding the latter, these findings suggests that not only are ‘seaside with resort’ districts associated with higher levels of multiple deprivation, but also within them, those areas that comprise the seaside resorts are shown to be where it is concentrated.

Further analysis of the LSOA level indicators of deprivation revealed: i) the overall distribution of deprivation for seaside resorts and how this compares with England; and, ii) the type and level of deprivation that resort LSOAs appear to be experiencing (see Figure 5.3). This analysis found that, for the index of multiple deprivation, seaside resorts had higher proportions of LSOAs in the ‘most deprived’ and ‘above average’ quartiles than England overall. A similar pattern is evident with respect to the following deprivation domains: employment; health and disability; living environment; income; and, education, training and skills (in order of their prevalence in the upper quartile). Thus, five out of seven LSOA-level domains had more than the England average of LSOAs in the upper two quartiles in 2010. When viewed against the proportion of resort LSOAs in the upper quartiles for the overall Index of Multiple Deprivation, this being 64.1%, it is apparent that ‘health and disability’ (73.4%), ‘employment’ (70.4%) and ‘income’ (65.7%) were greater problems in English seaside resorts compared to ‘living environment’ (60.6%) and ‘education, skills and training’ (59.2%) deprivation, while access to housing and services and crime were much less prevalent. Indeed, with respect to the latter two indicators of deprivation, there was a greater proportion of LSOAs in the least deprived quartiles, compared with the two most deprived quartiles. Moreover, the proportion of LSOAs which fell within each deprivation quartile in the crime domain and to a lesser extent, the access domain, was more evenly distributed and therefore more reflective of England as a whole. Thus, although the overall deprivation pattern for the seaside resorts was not consistent across all domains, the deprivation levels for five out of seven domains were found to be broadly similar to that of the overall Index of Multiple Deprivation.
Before proceeding to examine changes in deprivation between 2004 and 2010, it will be necessary to reflect on the relationship between the domain ranks and the overall Index of Multiple Deprivation. The reason is because the evidence presented so far suggests that multiple deprivation in English seaside resorts might be characterised by poor health and disability, high unemployment rates, low income households, poor environment conditions and low educational attainment rates. In order to test this evidence as well as the correspondence between the overall Index of Multiple Deprivation and the other individual domains, a series of ‘scatterplots’ (see Appendix Figures A1-7) of the 1,686 resort LSOAs were produced. A scatterplot visually represents the correspondence between two variables – in this instance the overall Index of Multiple Deprivation (plotted on the horizontal axes) and each of the seven domains (plotted on the vertical axes). Each scatterplot provides a value ‘r’, which is also known as a Pearson product moment ‘correlation coefficient’. The correlation coefficient varies from 0, where no relationship between the variables is found, to -1 or 1 where a perfect linear relationship between the variables occurs. Thus, it also provides information not only about the strength of the relationship, but also the direction of the relationship, which can be positive, negative or zero. When high values on one factor are associated with high values on the other factor, and low values on one factor are associated with low values on the other factor, the direction of the relationship is positive. A negative

<table>
<thead>
<tr>
<th>Domain</th>
<th>0%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Multiple deprivation</td>
<td>30.8</td>
<td>33.3</td>
<td>24.3</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>37.0</td>
<td>33.4</td>
<td>23.7</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td>35.7</td>
<td>37.7</td>
<td>22.2</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Living Environment</td>
<td>34.8</td>
<td>25.8</td>
<td>21.3</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>28.5</td>
<td>37.2</td>
<td>25.3</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>28.1</td>
<td>31.1</td>
<td>24.3</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>Crime</td>
<td>20.0</td>
<td>26.2</td>
<td>29.7</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>18.0</td>
<td>30.4</td>
<td>31.4</td>
<td>20.2</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.3: Distribution of ‘resort’ LSOAs by deprivation quartile against domains, 2010

Source: Author’s own work
relationship is where a higher value in one factor implies a lower value in the other. Coefficients lying more towards 0 (either positive or negative) indicate little or no statistical relationship between the variables under investigation. The results of the correlation analysis are displayed in Table 5.14.

Given the weight allocated to income (22.5%) and employment (22.5%) deprivation in the calculation of the overall Index of Multiple Deprivation score, it is not surprising to find that these two domains are most strongly associated with the IMD2010. The correspondence of overall deprivation with health and education deprivation and crime is somewhat weaker (domain weights of 13.5%, 13.5% and 9.3% respectively). The relationship with living environment and barriers to housing and services is weaker still (domain weights of 9.3% and 9.3% respectively). To put it another way, environmental conditions and geographical access to services and housing affordability have a much weaker association with overall deprivation in English seaside resorts. In summary, these results indicate that areas that rank highly on the overall Index of Multiple deprivation also tend to rank highly on the income, employment, health, education and crime domains. It would therefore seem that seaside resorts with a relatively high level of multiple deprivation are also likely to be characterised by disadvantage in the before mentioned aspects of deprivation, although the characteristics of each affected resort may differ. Moreover, as there are obvious links between the deprivation types, it also appears that seaside resorts are suffering from social exclusion.

Table 5.14: Correlation coefficients between IMD and domain ranks in seaside resorts

<table>
<thead>
<tr>
<th>Overall IMD2010 with Income Domain</th>
<th>0.96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall IMD2010 with Employment Domain</td>
<td>0.95</td>
</tr>
<tr>
<td>Overall IMD2010 with Health Domain</td>
<td>0.88</td>
</tr>
<tr>
<td>Overall IMD2010 with Education Domain</td>
<td>0.78</td>
</tr>
<tr>
<td>Overall IMD2010 with Crime & Disorder Domain</td>
<td>0.74</td>
</tr>
<tr>
<td>Overall IMD2010 with Living Environment Domain</td>
<td>0.63</td>
</tr>
<tr>
<td>Overall IMD2010 with Barriers to Housing/Services Domain</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Note: Correlations are significant at the $p < 0.01$ level (2-tailed).

Source: Author’s own work
5.2.1 Changes since 2004 and 2010 at LSOA level

Finally, in order to provide as comprehensive an insight as possible to the problems of English seaside resorts, the remainder of this section considers how resort LSOAs have changed in recent years, by means of looking more closely at changes in the Indices of Deprivation between 2004 and 2010. Indeed, as the English Indices of Deprivation 2010 are based on broadly the same methodology as the previous versions, and as the total number of LSOAs in England has remained the same, it is possible to compare the current pattern of deprivation with the pattern in 2004. When comparing the overall Index of Multiple Deprivation for 2004 with 2010, the levels of deprivation in the seaside resorts were broadly similar (see Table 5.15). That said in 2010 the overall distribution of LSOAs was a little more widely spread than in 2004, with a smaller proportion of LSOAs in the more deprived quartiles (64.5% in 2004 compared with 64.1% in 2010) and a greater proportion of LSOAs in the lesser deprived quartiles (35.5% in 2004 compared with 35.9% in 2010). More in-depth examination, however, of the overall Index of Multiple Deprivation at LSOA level revealed the movement of resort LSOAs across national quartile groups between 2004 and 2010. Table 5.15 illustrates this movement and shows that approximately four-in-five (81.7%) LSOAs remained in the same quartile, 8.7 per cent (147 areas) became relatively less deprived (went into a higher numbered quartile) and 9.5 per cent (161 areas) became relatively more deprived (went into a lower numbered quartile). Summarising this movement, it can be said that overall there has been a slight deterioration in the seaside resorts deprivation status relative to other areas in England, with a greater proportion of LSOAs in the most deprived quartile (30.8% in 2010 compared with 28.4% in 2004).
Table 5.15: Cross tabulation of resort LSOAs in IMD quartiles in 2004 and 2010

<table>
<thead>
<tr>
<th>IMD2010</th>
<th>IMD2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>AA</td>
</tr>
<tr>
<td>MD</td>
<td>448</td>
</tr>
<tr>
<td>AA</td>
<td>32</td>
</tr>
<tr>
<td>BA</td>
<td>60</td>
</tr>
<tr>
<td>LD</td>
<td>55</td>
</tr>
</tbody>
</table>

Note: Cells shaded yellow represent resort LSOAs where there was no change in quartile grouping between 2004 and 2010. Green indicates a movement to lesser deprivation, red indicates a movement to more deprivation.

Source: Author’s own work

Quartile composition change was also investigated for the LSOA indicators of deprivation (although they have not been presented here in the interests of space and clarity). Detailed cross-tabulations are given in Appendix Table A61. The results, as summarised in Table 5.16, indicate that overall seaside resorts have become relatively more deprived on five out of the seven LSOA-level domains of deprivation. The differences between the results of the Indices of Deprivation 2010 and 2004 are mostly fairly moderate, though there have been some notable changes. First, there are increases in the proportion of LSOAs in the most deprived 50% in the health and disability, living environment, access and education domains, which must contribute to the increased relative deprivation noted earlier. Second, with respect to the before mentioned domains, the crime domain and to a lesser extent, employment, the changes have been somewhat erratic. As can be seen from the data in Appendix Table A61, the resort LSOAs which improved or worsened have done so by more than one quartile and, in many cases, by three quartiles. Even though the indices of deprivation are about relative deprivation not absolute changes, such changes in deprivation levels of resort LSOAs cannot be due to the improvement or worsening of deprivation rankings of other small areas elsewhere in England alone. Indeed, the remarkable changes in deprivation levels, both positive and negative, might lead one to infer that resort-level influences in general and neighbourhood factors in particular are instrumental in shaping the fortunes of the resort LSOAs.
Table 5.16: Comparison of Indices of Deprivation 2004 and 2010: Resort LSOAs

<table>
<thead>
<tr>
<th>Domain</th>
<th>% of LSOAs that are:</th>
<th>Overall change from 2004</th>
<th>% of LSOAs in upper quartiles:</th>
<th>Change from 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Similar</td>
<td>Getting worse</td>
<td>Getting better</td>
<td>2004</td>
</tr>
<tr>
<td>Health</td>
<td>68.4</td>
<td>21.2</td>
<td>10.4</td>
<td>-10.8</td>
</tr>
<tr>
<td>Living environment</td>
<td>74.0</td>
<td>17.2</td>
<td>8.8</td>
<td>-8.4</td>
</tr>
<tr>
<td>Housing and services</td>
<td>52.9</td>
<td>26.2</td>
<td>20.9</td>
<td>-5.3</td>
</tr>
<tr>
<td>Education</td>
<td>78.2</td>
<td>13.2</td>
<td>8.6</td>
<td>-4.6</td>
</tr>
<tr>
<td>Crime and disorder</td>
<td>55.9</td>
<td>23.8</td>
<td>20.3</td>
<td>-3.5</td>
</tr>
<tr>
<td>Employment</td>
<td>77.3</td>
<td>10.6</td>
<td>12.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Income</td>
<td>79.9</td>
<td>8.5</td>
<td>11.6</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Note: Green indicates a movement to lesser deprivation, red indicates a movement to more deprivation

Source: Author’s own work

Lastly, considering now briefly national percentiles and in particular, upper deciles, gives a better impression (compared to national quartiles) of the extent and severity of deprivation. It is apparent from the data in Table 5.17 that, when comparing the number of LSOAs in the first two deciles, deprivation in English seaside resorts has increased both in extent (number) and concentration (severity), with 37 more (2.2% more) LSOAs being in the 20% most deprived nationally since 2004. Moreover, there has been an increase in resort LSOAs in the most deprived 10% of areas nationally – 12.3% of LSOAs in 2010 fell into the most deprived 10 per cent compared to 8.8% in 2004 and 10.1% in 2007. Again, a comparison of the Index Multiple Deprivation data for 2004 and 2010 at LSOA level reveals not only did seaside resorts generally have greater levels of deprivation than the rest of England in 2010, but also that seaside resorts as a whole have become relatively more deprived.
Table 5.17: Change in distribution of resort LSOAs by IMD percentiles, 2004 and 2010

<table>
<thead>
<tr>
<th>Most deprived</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>50-100%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of resort LSOAs falling into national percentiles</td>
<td>IMD 2004</td>
<td>148</td>
<td>214</td>
<td>249</td>
<td>260</td>
<td>218</td>
<td>597</td>
</tr>
<tr>
<td></td>
<td>IMD 2010</td>
<td>207</td>
<td>192</td>
<td>249</td>
<td>232</td>
<td>200</td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>Change</td>
<td>59</td>
<td>-22</td>
<td>0</td>
<td>-28</td>
<td>-18</td>
<td>9</td>
</tr>
<tr>
<td>Percentage of resort LSOAs falling into national percentiles</td>
<td>IMD 2004</td>
<td>8.8</td>
<td>12.7</td>
<td>14.8</td>
<td>15.4</td>
<td>12.9</td>
<td>35.4</td>
</tr>
<tr>
<td></td>
<td>IMD 2010</td>
<td>12.3</td>
<td>11.4</td>
<td>14.8</td>
<td>13.8</td>
<td>11.9</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Change</td>
<td>3.5</td>
<td>-1.3</td>
<td>0</td>
<td>-1.6</td>
<td>-1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Note: The % of resort LSOAs in each decile group for 2004, 2007 and 2010 is given in Appendix Table A62.

Source: Author’s own work

5.2.2 Summary of LSOA-level results

Section 5.2 of this chapter employed bivariate analysis using cross-tabulations and statistical tests at small area level within this study’s 39 ‘seaside with resort’ districts to illuminate variations in the incidence of a number of key deprivation-related variables. This analysis found that, within the seaside ‘resort LSOAs’, in addition to the overall Index of Multiple Deprivation, six out of the seven LSOA-level domains (employment, income, health and disability, living environment, crime and disorder and education, skills and training) recorded an observed significance value of < 0.001. These results indicate that the highest levels of deprivation are associated with seaside ‘resort LSOAs’ as opposed to ‘other LSOAs’ within the districts defined as ‘seaside with resort’. Further interrogation of the LSOA-level data revealed the type and level of deprivation that ‘resort LSOAs’ seem to be experiencing. This examination showed that seaside resorts had greater levels of deprivation than England as a whole with respect to: employment; health and disability; living environment; income; and, education, training and skills. In light of these findings, a Pearson’s product moment correlation were used to determine the correspondence between overall deprivation as measured by the Index of Multiple Deprivation and each specific ‘domain’ of deprivation for all resort LSOAs. The results of the statistical analysis show highly significant positive associations ($p = < 0.01$) between the index of multiple deprivation and the seven domains. Moreover, some strong positive relationships were found to exist. Resort areas that score highly on the overall index of multiple deprivation also tend to score
highly on the income ($r = 0.96$) employment ($r = 0.95$), health ($r = 0.88$), education ($r = 0.78$) and crime ($r = 0.74$) domains. Due to the linked nature of the problems being experienced, it can therefore be assumed that social exclusion is very much an issue within English seaside resorts.

Changes in levels of deprivation also were explored with reference to the 2004 and 2010 versions of the Indices of Deprivation. Even though a relatively short time frame, it offers an important insight into where positive and negative change is occurring. Analysis of quartile composition change demonstrated that for the Index of Multiple deprivation and for five out of seven deprivation domains (health and disability, living environment, housing and services, education and crime and disorder), overall seaside resorts had become relatively more deprived. Since 2004, there had been a slight improvement in the proportion of resorts LSOAs suffering from income and employment deprivation. However, (along with health and disability) employment and income still remain the more pressing aspects of deprivation in seaside resorts, as indicated by the per cent of LSOAs in the upper quartiles. With respect to the erratic (+/-) changes that have occurred, as quartile groupings are broader and therefore they are less subject to minor change, it is contended here that resort-level and neighbourhood effects must influence multiple deprivation in English seaside resorts. The changes cannot be due to the relative nature of the Indices of Deprivation database alone. Another striking result to emerge from the data is that, in relation to national percentiles and in particular, the most deprived 20% and 10% of LSOAs in England on the Index of Multiple Deprivation, overall deprivation has increased both in extent (number) and concentration (severity). This finding is particularly disturbing as it suggests not only are seaside resorts suffering from acute levels of multiple deprivation, but also the problem is deepening.

Taken together, these results provide a useful overview of the nature, intensity and distribution of multiple deprivation in English seaside resorts. Further insight may be gained, and the formulation of remedial policies advanced, by investigating the variation in multiple deprivation between and within seaside resorts. The section that follows seeks to address this important objective.
5.3 Resort-level analysis

The analysis presented so far has related to seaside resorts as a whole. This section of the chapter presents findings on the variation in multiple deprivation between and within seaside resorts. The analysis is split into three sections here. First, there is further investigation of the severity of multiple deprivation within the 58 seaside resorts. Second, there is an assessment of whether there are “true” differences in deprivation between the larger and mid-sized seaside resorts. Third, there is a more in-depth examination of deprivation within the 25 larger seaside resorts and the 33 mid-sized seaside resorts. Here, the resorts are compared with each other, to see if there are any differences in the patterns of deprivation. A summary of the results of all the above mentioned analyses is then provided.

5.3.1 Experience of multiple deprivation in seaside resorts

This study found that the 1,686 ‘resort LSOAs’ related to 58 seaside resorts and that more than four-in-five resorts (86.2%) have at least one LSOA in the upper quartile of most deprived LSOAs of England when tested against the index of multiple deprivation at LSOA level (see Table 5.18). With the exception of the access to housing and services domain and to a lesser extent, crime, a similar pattern is evident for the seven other domains. These findings reinforce the foregoing analysis that the majority of seaside resorts appear to be experiencing similar types of multiple deprivation, which when linked together relate to social exclusion.

Table 5.18: Number of resorts with at least one LSOA in the upper quartile

<table>
<thead>
<tr>
<th>Domain</th>
<th>2010</th>
<th>2004</th>
<th>Change since 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index of Multiple Deprivation</td>
<td>50</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>Employment</td>
<td>54</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>Income</td>
<td>51</td>
<td>52</td>
<td>-1</td>
</tr>
<tr>
<td>Education, skills and training</td>
<td>51</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>Health and disability</td>
<td>50</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td>Living environment</td>
<td>50</td>
<td>52</td>
<td>-2</td>
</tr>
<tr>
<td>Crime and disorder</td>
<td>43</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td>Barriers to housing and services</td>
<td>42</td>
<td>41</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: Author’s own work
As explained in the methodology, the Indices of Deprivation allow examination of the composition of deprivation in an area. Taking the most deprived 25% (upper quartile) of resort LSOAs on the overall Index of Multiple Deprivation 2010, it is possible to ascertain the number of component domains on which each resort LSOA ranks within the most deprived 25% of LSOAs nationally. The results obtained from this detailed investigation are summarised in Table 5.19. This table is quite revealing in several ways. First, thirty-one of the most deprived 519 resort LSOAs on the overall Index of Multiple Deprivation rank in the most deprived 25% of LSOAs on all seven component domains. Second, the majority (55.7%) of the 519 resort LSOAs rank in the most deprived 25% of LSOAs on five or more domains. Third, almost all (98.1%) of the 519 resort LSOAs rank in the most deprived 25% of LSOAs on three or more domains. Fourth, all of the 519 resort LSOAs rank in the most deprived 25% of LSOAs on at least two domains.

Table 5.19: Number of domains on which the most deprived 25% of resort LSOAs are in the most deprived quartile, 2010

<table>
<thead>
<tr>
<th>Number of domains</th>
<th>Number of LSOAs (Number of resorts)</th>
<th>Percentage of LSOAs</th>
<th>Cumulative percentage of LSOAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>31 (7)</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>6</td>
<td>117 (27)</td>
<td>22.5</td>
<td>28.5</td>
</tr>
<tr>
<td>5</td>
<td>141 (38)</td>
<td>27.2</td>
<td>55.7</td>
</tr>
<tr>
<td>4</td>
<td>146 (45)</td>
<td>28.1</td>
<td>83.8</td>
</tr>
<tr>
<td>3</td>
<td>74 (30)</td>
<td>14.3</td>
<td>98.1</td>
</tr>
<tr>
<td>2</td>
<td>10 (8)</td>
<td>1.9</td>
<td>100.0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>519 (50)</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Note: Refer to the Indices of Seaside Resort Performance for details of the LSOAs deprived by number of domains.

Source: Author’s own work

Thus, many of the most deprived seaside resort areas in England face multiple issues with the majority of these LSOAs amongst the most deprived in at least three of the seven composite domains in the Indices, and over half being amongst the most deprived in at least five of the domains. Based on the latter measure, a number of seaside resorts were identified also as experiencing particular problems of multiple deprivation. In all, 289 LSOAs fell into this classification and are located within 39 individual resorts, which are located within 30
(out of 39) seaside districts scattered around England. Table 5.20 lists the 39 most deprived seaside resorts ranked by number of LSOAs. The most striking result to emerge from the data is that, thirteen seaside resorts had more than 25% of their neighbourhoods affected by deprivation. Furthermore, seven seaside resorts had a third or more of their small areas suffering from deprivation. The seven seaside resorts are (in order of their prevalence) Margate, Blackpool, Hastings, Ilfracombe, Dover, Fleetwood and Skegness. None of these resorts share the same seaside district and all are situated in different regions of England.
Table 5.20: Particularly deprived English seaside resorts, 2010

<table>
<thead>
<tr>
<th>Resort</th>
<th>Size</th>
<th>‘Seaside’ district</th>
<th>Region</th>
<th>Number of LSOAs in most deprived quartile on five or more LSOA level domains</th>
<th>Total number of LSOAs within the seaside resort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n) (%)</td>
<td></td>
</tr>
<tr>
<td>Blackpool</td>
<td>*(22)</td>
<td>L Blackpool</td>
<td>NW</td>
<td>44 94 46.8</td>
<td></td>
</tr>
<tr>
<td>Brighton</td>
<td>*(3)</td>
<td>L Brighton and Hove</td>
<td>SE</td>
<td>28 101 27.7</td>
<td></td>
</tr>
<tr>
<td>Hastings</td>
<td></td>
<td>L Hastings</td>
<td>SE</td>
<td>23 53 43.4</td>
<td></td>
</tr>
<tr>
<td>Bournemouth</td>
<td>*(1)</td>
<td>L Bournemouth</td>
<td>SW</td>
<td>16 107 15.0</td>
<td></td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td></td>
<td>L Southend-on-Sea</td>
<td>E</td>
<td>15 107 14.0</td>
<td></td>
</tr>
<tr>
<td>Margate</td>
<td>*(1)</td>
<td>L Thanet</td>
<td>SE</td>
<td>13 27 48.1</td>
<td></td>
</tr>
<tr>
<td>Scarborough</td>
<td></td>
<td>L Scarborough</td>
<td>Y&H</td>
<td>11 34 32.4</td>
<td></td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td></td>
<td>L Great Yarmouth</td>
<td>E</td>
<td>11 36 30.6</td>
<td></td>
</tr>
<tr>
<td>Torquay</td>
<td>*(1)</td>
<td>L Torbay</td>
<td>SW</td>
<td>11 43 25.6</td>
<td></td>
</tr>
<tr>
<td>Eastbourne</td>
<td>*(2)</td>
<td>L Eastbourne</td>
<td>SE</td>
<td>10 59 16.9</td>
<td></td>
</tr>
<tr>
<td>Folkestone</td>
<td></td>
<td>L Shepway</td>
<td>SE</td>
<td>9 31 29.0</td>
<td></td>
</tr>
<tr>
<td>Weston-s-mare</td>
<td></td>
<td>L North Somerset</td>
<td>SW</td>
<td>8 48 16.7</td>
<td></td>
</tr>
<tr>
<td>Lowestoft</td>
<td></td>
<td>L Waveney</td>
<td>E</td>
<td>7 42 16.7</td>
<td></td>
</tr>
<tr>
<td>Dover</td>
<td></td>
<td>M Dover</td>
<td>SE</td>
<td>6 18 33.3</td>
<td></td>
</tr>
<tr>
<td>Fleetwood</td>
<td></td>
<td>M Wyre</td>
<td>NW</td>
<td>6 18 33.3</td>
<td></td>
</tr>
<tr>
<td>Ramsgate</td>
<td></td>
<td>L Thanet</td>
<td>SE</td>
<td>6 26 23.1</td>
<td></td>
</tr>
<tr>
<td>Clacton-on-Sea</td>
<td></td>
<td>L Tendring</td>
<td>E</td>
<td>6 32 18.8</td>
<td></td>
</tr>
<tr>
<td>Morecambe</td>
<td></td>
<td>M Lancaster</td>
<td>NW</td>
<td>5 21 23.8</td>
<td></td>
</tr>
<tr>
<td>South Shields</td>
<td></td>
<td>L South Tyneside</td>
<td>NE</td>
<td>5 55 9.1</td>
<td></td>
</tr>
<tr>
<td>Hove</td>
<td></td>
<td>L Brighton and Hove</td>
<td>SE</td>
<td>5 63 7.9</td>
<td></td>
</tr>
<tr>
<td>Skegness</td>
<td></td>
<td>M East Lindsey</td>
<td>EM</td>
<td>4 12 33.3</td>
<td></td>
</tr>
<tr>
<td>Penzance</td>
<td></td>
<td>M Penwith</td>
<td>SW</td>
<td>4 13 30.8</td>
<td></td>
</tr>
<tr>
<td>Littlehampton</td>
<td>*(1)</td>
<td>M Arun</td>
<td>SE</td>
<td>4 17 23.5</td>
<td></td>
</tr>
<tr>
<td>Weymouth</td>
<td></td>
<td>L Weymouth & Portland</td>
<td>SW</td>
<td>4 31 12.9</td>
<td></td>
</tr>
<tr>
<td>Ilfracombe</td>
<td></td>
<td>M North Devon</td>
<td>SW</td>
<td>3 8 37.5</td>
<td></td>
</tr>
<tr>
<td>Bexhill-on-Sea</td>
<td></td>
<td>L Rother</td>
<td>SE</td>
<td>3 28 10.7</td>
<td></td>
</tr>
<tr>
<td>Southsea</td>
<td></td>
<td>L Portsmouth</td>
<td>SE</td>
<td>3 32 9.4</td>
<td></td>
</tr>
<tr>
<td>Paignton</td>
<td></td>
<td>L Torbay</td>
<td>SW</td>
<td>3 34 8.8</td>
<td></td>
</tr>
<tr>
<td>Heysham</td>
<td></td>
<td>M Lancaster</td>
<td>NW</td>
<td>2 11 18.2</td>
<td></td>
</tr>
<tr>
<td>Bognor Regis</td>
<td></td>
<td>M Arun</td>
<td>SE</td>
<td>2 15 13.3</td>
<td></td>
</tr>
<tr>
<td>Ryde</td>
<td></td>
<td>M Isle of Wight</td>
<td>SE</td>
<td>2 16 12.5</td>
<td></td>
</tr>
<tr>
<td>Whitstable</td>
<td></td>
<td>M Canterbury</td>
<td>SE</td>
<td>2 21 9.5</td>
<td></td>
</tr>
<tr>
<td>Herne Bay</td>
<td></td>
<td>M Canterbury</td>
<td>SE</td>
<td>2 23 8.7</td>
<td></td>
</tr>
<tr>
<td>Whitby</td>
<td></td>
<td>M Scarborough</td>
<td>Y&H</td>
<td>1 9 11.1</td>
<td></td>
</tr>
<tr>
<td>Brixham</td>
<td></td>
<td>M Torbay</td>
<td>SW</td>
<td>1 12 8.3</td>
<td></td>
</tr>
<tr>
<td>Burnham-on-Sea</td>
<td></td>
<td>M Sedgeemoor</td>
<td>SW</td>
<td>1 12 8.3</td>
<td></td>
</tr>
<tr>
<td>Thornton-Cleveleys</td>
<td></td>
<td>M Wyre</td>
<td>NW</td>
<td>1 21 4.8</td>
<td></td>
</tr>
<tr>
<td>Crosby</td>
<td></td>
<td>L Selton</td>
<td>NW</td>
<td>1 32 3.1</td>
<td></td>
</tr>
<tr>
<td>Southport</td>
<td></td>
<td>L Selton</td>
<td>NW</td>
<td>1 60 1.7</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1) Resorts highlighted in yellow had more than 25% of their neighbourhoods affected by multiple deprivation
2) * (n) denotes resorts that had LSOAs rank among the 25% most deprived nationally on all seven deprivation domains (and the number of LSOAs).

Source: Author’s own work
5.3.2 *Multiple deprivation and resort size*

The research question addressed in this section is whether or not there is a relationship between the size of the resort and the incidence and level of multiple deprivation. To answer this question, the 58 seaside resorts were classified as either ‘large’ or ‘mid-sized’ based on resident population. Using the 2001 census population figures at LSOA level, the ‘large’ resorts are those which had a population more than or equal to 40,000; the ‘mid-sized’ resorts are defined as those which had a population between 10,000 and 39,999. Employing this population threshold revealed that, of the 1,686 resort LSOAs, 1,235 LSOAs corresponded to 25 ‘large’ seaside resorts, while the other 451 related to 33 ‘mid-sized’ resorts. After determining the population size of the resorts, the overall Index of Multiple Deprivation and the seven indices of deprivation were recoded into national quartiles based on their rankings calculated in the respective Indices of Deprivation databases. Cross-tabulations and Pearson chi-square analyses against all of the ‘large’ and ‘medium’ resort LSOAs were then undertaken so that their association with deprivation may be ascertained. More specifically, chi-square tests were conducted to compare the percentages for large/medium resort LSOAs with the percentage of the total column across each deprivation quartile. Cross tabulations of deprivation quartiles with resort size as a binary variable are given in Appendix Tables A63–70. These results are summarised in Table 5.21.

The results, as shown in Table 5.21, indicate that, although both the large and the medium-sized seaside resorts had higher levels of multiple deprivation than might be expected, the highest levels of multiple deprivation are associated with ‘large resort LSOAs’ ($p < 0.001$). In 2010, 30.8% resort LSOAs fell within the upper quartile, but for ‘large resort LSOAs’ the figure is higher at 33.8% and for ‘medium resort LSOAs’ it is lower at 22.6%. A similar pattern is evident not only for both the Index of Multiple Deprivation 2007 and the Index of Multiple Deprivation 2004, but also for each of the seven LSOA-level domains (see Figure 5.4). It can be seen from this figure that the medium-sized seaside resorts have lower levels of deprivation compared with large seaside resorts as shown by a smaller percentage of LSOAs in the most deprived quartile. However, differences in the extent of deprivation across
the domains vary in magnitude. The differences between resort size categories are greater for health and disability deprivation (15.2%), crime (8.8%), education, training and skills deprivation (8.4%), living environment deprivation (8.4%) and employment deprivation (8.2%), while barriers to housing and services (3.7%) and income deprivation (2.8%) are less significant in terms of size. With regard to the extant literature and the general hypothesis that medium (and small) sized resorts were more likely to have higher levels of multiple deprivation, there was weak support (although this study did not include seaside destinations with populations below 10,000). This study found that, overall, medium-sized seaside resorts are less deprived than their larger counterparts.

Table 5.21: P values of the Pearson’s chi-square test – deprivation level by resort size

<table>
<thead>
<tr>
<th>Deprivation level Domain</th>
<th>MD</th>
<th>AA</th>
<th>BA</th>
<th>LD</th>
<th>Sig-level (C.V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall IMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.118)</td>
</tr>
<tr>
<td>2007</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.122)</td>
</tr>
<tr>
<td>2010</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.120)</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.012 (0.081)</td>
</tr>
<tr>
<td>2007</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.110)</td>
</tr>
<tr>
<td>2010</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.128)</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>0.072 NS</td>
</tr>
<tr>
<td>2007</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.090 NS</td>
</tr>
<tr>
<td>2010</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.008 (0.084)</td>
</tr>
<tr>
<td>Health and disability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.125)</td>
</tr>
<tr>
<td>2007</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.147)</td>
</tr>
<tr>
<td>2010</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.171)</td>
</tr>
<tr>
<td>Living environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.008 (0.084)</td>
</tr>
<tr>
<td>2007</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.123)</td>
</tr>
<tr>
<td>2010</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.108)</td>
</tr>
<tr>
<td>Barriers to housing and services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.148)</td>
</tr>
<tr>
<td>2007</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>0.000 (0.118)</td>
</tr>
<tr>
<td>2010</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.116)</td>
</tr>
<tr>
<td>Education, skills and training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>0.002 (0.095)</td>
</tr>
<tr>
<td>2007</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>0.002 (0.002)</td>
</tr>
<tr>
<td>2010</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>0.000 (0.106)</td>
</tr>
<tr>
<td>Crime and disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.231)</td>
</tr>
<tr>
<td>2007</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.279)</td>
</tr>
<tr>
<td>2010</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>0.000 (0.176)</td>
</tr>
</tbody>
</table>

Note: L = ‘large’, M = ‘medium’ resort LSOAs. Cells are shaded blue simply to aid comparison.

Source: Author’s own work
Figure 5.4: Indices of Deprivation domain quartile distribution of LSOAs for the ‘medium’ sized English seaside resorts, the ‘large’ seaside resorts and England, 2010

Source: Author’s own work

Having established that people living in large seaside resorts do generally face higher levels of multiple deprivation than those living in medium-sized resorts, it now needs to be ascertained whether the nature of multiple deprivation is similar in both large and medium-sized resorts. As before with the LSOA-level analysis of resorts as a whole, the correlation between the Index of Multiple Deprivation rank and the individual domain ranks, this time for the 1,235 ‘large resort LSOAs’ and 451 ‘medium resort LSOAs’, was calculated. Table 5.22
reports the correlation coefficients between the variables for ‘large’ and ‘medium’ resorts. The overall correlation coefficients (i.e., medium-sized and large resorts combined) are also presented for comparison and context. As can be seen, the great majority of domains are positively correlated to the overall Index of Multiple Deprivation. There is strong positive correlation between the multiple deprivation measure and income, employment, health, education and crime. The correlation is at least 0.72 for these five deprivation measures in both the ‘large’ and the ‘medium’ resorts, which is consistent with resorts as a whole. Living environment also has a positive correlation with multiple deprivation. The degree of association, however, is not as strong in large resorts compared with medium-sized resorts. Perhaps the most striking result to emerge from the data comparison is that the relationship between overall deprivation and barriers to housing and services is confined to large resorts. Withstanding the latter, these findings suggest that both the ‘large’ and the ‘medium’ seaside resorts are experiencing similar types of multiple deprivation and as there are obvious links between deprivation types, it also appears that they both are suffering from social exclusion.

<table>
<thead>
<tr>
<th>Deprivation domain</th>
<th>All resorts</th>
<th>Large resorts</th>
<th>Medium resorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>Employment</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Health</td>
<td>0.88</td>
<td>0.88</td>
<td>0.85</td>
</tr>
<tr>
<td>Education</td>
<td>0.78</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>Crime & Disorder</td>
<td>0.74</td>
<td>0.74</td>
<td>0.72</td>
</tr>
<tr>
<td>Living Environment</td>
<td>0.63</td>
<td>0.59</td>
<td>0.72</td>
</tr>
<tr>
<td>Barriers to Housing/Services</td>
<td>0.24</td>
<td>0.30</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note:
1. Correlations are significant at the p = <0.01 level (2-tailed).
2. $r = 1.0$ equates to identical rankings; -1.0 to perfectly inverted rankings

Source: Author’s own work

The remainder of this section gives a summary of changes between the Indices of Deprivation 2004 and 2010. The proportion of ‘large’ and ‘medium’ resort LSOAs that fall within national quartiles is shown in Figure 5.5 and Figure 5.6 respectively. As can be seen,
the differences between the results of the Indices of Deprivation 2010 and 2004 are mostly fairly minor. Considering first the Index of Multiple Deprivation, the levels of deprivation were broadly similar in both the larger and medium-sized resorts. Since 2004, there has been a slight contraction in the proportion of LSOAs classed nationally as above average deprived (i.e., quartiles one and two) and a slight expansion in the proportion classed nationally as below average deprived (i.e., quartiles three and four). Nonetheless, there remain high levels of multiple deprivation, with increases in the proportion of LSOAs populating the upper quartiles in both the large and the medium-sized seaside resorts. When inspecting the data for the domains, in the larger seaside resorts there were increases in the proportion of LSOAs in the most deprived quartiles on five out of the seven domains (health, living environment, income, education and housing and services). The crime domain and, to a much lesser extent, employment, became more evenly distributed when comparing 2004 with 2007, with a slight contraction in the proportion of LSOAs exhibiting a level of deprivation in the upper quartiles. The domains which had the highest proportion of LSOAs in the upper quartiles in both 2004 and 2010 were the ‘health deprivation and disability’ domain and the ‘employment deprivation’ domain. The latter domain had the greatest proportion of all domains in 2004 (73.4% compared with 71.1% for the ‘health deprivation and disability’ domain) whereas the former had the greatest proportion of all domains in 2010 (77.5% compared with 72.2% for the ‘employment deprivation’ domain).

Regarding the medium-sized seaside resorts, there were increases in the proportion of LSOAs in the most deprived quartiles on all but one of the seven deprivation domains, this exception being employment. The domains which had the highest proportion of LSOAs in the upper quartiles in both 2004 and 2010 were, in order of their prevalence in 2004, ‘employment deprivation’, ‘health deprivation and disability’ and ‘income deprivation’. However, income deprivation became the more pressing aspect of deprivation in 2010, followed by health and employment deprivation. It is important to bear in mind the differences between the results, as measured by the percentage change, are minor. Perhaps the most striking observation of the data comparison is that crime and the barriers to housing and
services domain had overwhelmingly more than 50% of LSOAs in the lower quartiles as a whole in both 2004 and 2010, although since 2004 there were increases in the proportion of LSOAs in the upper quartiles.

Summarising these findings, it can be said that overall the ‘large’ seaside resorts have become relatively more deprived on five of the domains, whereas the ‘medium’ seaside resorts have become relatively more deprived on six of the domains. Across most aspects of deprivation, the medium-sized seaside resorts were more similar to England than the larger seaside resorts. It is clear that the larger seaside resorts have the highest levels of deprivation.
Figure 5.5: Indices of Deprivation domain quartile distribution for the large English seaside resorts and England, 2004 and 2010

Source: Author’s own work

Figure 5.6: Indices of Deprivation domain quartile distribution for the medium-sized English seaside resorts and England, 2004 and 2010

Source: Author’s own work
5.3.3 Deprivation in large and mid-sized seaside resorts

This section considers in more detail the different dimensions of deprivation in the 25 larger seaside resorts and the 33 mid-sized seaside resorts. It begins by investigating whether the levels of multiple deprivation are similar between the resorts. At this stage, in order to gain a meaningful insight into differences in deprivation, the ‘large’ and the ‘medium’ resort LSOAs are grouped together based on national deprivation quintiles (as opposed to quartiles). However, the matter of establishing how deprived the larger and the mid-sized seaside resorts are is only one part of the story. It is also important to consider how deprivation manifests itself. Here, the variation between the resorts is further explored by calculating the average rank of the LSOAs in each seaside resort on the Index of Multiple Deprivation and domains, which provides a basis for subsequent analysis to identify the pattern of multiple deprivation in seaside resorts.

Looking at national deprivation quintiles first of all, this study found that there was no consistent pattern of deprivation among the 25 larger seaside resorts and the 33 mid-sized seaside resorts in 2010 when tested against the Index of Multiple Deprivation, in terms of the proportion of LSOAs within each resort falling in the most deprived and the least deprived 20% of LSOAs in England. Put another way, there is variation in the levels of multiple deprivation in the resorts. Consider Figure 5.7, which shows the 25 larger seaside resorts and their local LSOAs split by Index of Multiple Deprivation rank national quintiles. A total of 324 (26.2%) ‘large resort LSOAs’ fall within the most deprived 20% nationally. However, these LSOAs are not distributed evenly. Although all 25 of the larger seaside resorts had an LSOA exhibiting a level of multiple deprivation in England’s most deprived 20%, every one of the first 15 resorts on the list down as far as Southend-on-Sea had higher levels of multiple deprivation than might be expected. Moreover, a number of the 15 resorts had at least a third of their LSOAs being ‘most deprived’. The most striking result to emerge from the data is that, while the vast majority of resorts do not have many areas with very low levels of multiple deprivation, only one resort (Clacton-on-Sea) is without an LSOA exhibiting a level
of deprivation in the two least deprived quintiles. Another interesting observation is that two resorts (i.e., Southend-on-Sea, Crosby) have a broadly equal proportion of LSOAs in each deprivation quintile and represent a mirror image of England.

Figure 5.8 shows that distribution of LSOAs by deprivation quintiles differs greatly between mid-sized resorts too. None of the individual 33 mid-sized resorts display a pattern of deprivation similar to England as a whole. Considering the upper quintile, a total of 75 (16.6%) ‘medium resort LSOAs’ fall within the most deprived 20% nationally, but correspond to 22 (out of 33) resorts, of which every one of the first 10 resorts on the list down as far as Falmouth had higher levels of multiple deprivation than might be expected. When viewed against the total number of seaside resorts in each size category, the larger seaside resorts (15/25) had higher levels of multiple deprivation than England, double the proportion of mid-sized seaside resorts (10/33). However, when comparing Figure 5.8 with Figure 5.7, it can be seen that the geographic extent of multiple deprivation is greater in three of the mid-sized resorts (Skegness, Dover, Heysham) than any of the large resorts. It is necessary to emphasise that five medium-sized seaside resorts (i.e., West Kirby, Swanage, Sidmouth, Formby, Clevedon) had no LSOAs in the two most deprived quintiles. Thus, there are more mid-sized resorts with many areas of very low deprivation. Taken together, these results indicate that there is more variation in the levels of deprivation in mid-sized seaside resorts.
Figure 5.7: Index of Multiple Deprivation quintile distribution for the ‘large’ seaside resorts and England, 2010

Source: Author’s own work
Figure 5.8: Index of Multiple Deprivation quintile distribution for mid-sized seaside resorts and England, 2010

Source: Author’s own work
The analysis so far has been based on the quintile distribution of LSOAs for the seaside resorts. Inevitably, this approach provides a difficult pattern to interpret. A single measure to compare the seaside resorts is required to facilitate further investigation. One way to compare the seaside resorts in terms of deprivation is to use the median rank for the Index of Multiple Deprivation and then rank the resorts by this measure. Figure 5.9 summarises the range of LSOA rankings within each resort. The resorts are ranked from lowest to highest on the basis of the median LSOA rank; the median (\tilde{x}) is the ‘middle’ LSOA with half the LSOAs ranked above and below. Ranks range from 1 to 32,482 and the black line running across the centre of the diagram indicates the middle of this range – the dividing line between more and less deprived LSOAs. Median values below the black line indicate that a resort is more deprived than the national average while those above it indicate that a resort is less deprived. It is clear there is considerable variation in the overall level of deprivation between resorts. The least deprived resort, West Kirby ($\tilde{x} = 25,168$), has almost all of its range lying above the national average ($\tilde{x} = 16,242$), while the most deprived resort, Skegness ($\tilde{x} = 5,175$), has most of its range lying below the average. Other resorts fall between these two and the order is interesting in its own right. As can be seen, many seaside resorts (24/58, 41.3%) have a wide spread of rankings and contain LSOAs in the most and least deprived 20% of areas nationally. Moreover, the vast majority of seaside resorts (42/58, 72.4%) have greater overall deprivation than the England average (i.e., a ranking below 16,242). Although an equal number of large and mid-sized resorts fall into this classification, when viewed against the total number of resorts in each size category, the larger resorts score worse than mid-sized ones. 63.4 per cent (21/33) of the mid-sized seaside resorts had higher levels of deprivation than the England average. The corresponding figure for larger seaside resorts is 84 per cent (21/25).
Figure 5.9: Range of LSOA ranks on Index of Multiple Deprivation for seaside resorts, 2010

Source: Author’s own work
The median rank is a better measure than the average (i.e., arithmetic mean) rank which can be distorted by extreme values. However, the analysis reported in Figure 5.9 does not take account of the difference in population size between LSOAs in each resort. Consequently, it only provides indicative data on resort level deprivation. Thus, the average LSOA rank for each of the seaside resorts was calculated following the methodology used by the DCLG when calculating the ranks for local authorities. The average ranking of each resort is a population-weighted average of the ranking of each constituent LSOA. The derived rankings for the 58 seaside resorts by deprivation measure can be seen in Appendix Table A71. As before, a low rank indicates higher deprivation; a high rank indicates lower deprivation. There are 32,482 LSOAs across England as a whole. Accordingly, an average ranking between 1 and 16,242 indicates that a resort is more deprived than the national average. An average ranking below 8,120 indicates that a resort is among the most deprived in England. Table 5.23 presents the summary statistics for the 58 seaside resorts, 33 mid-sized resorts and 25 large resorts by deprivation domain.

Table 5.23: Number and per cent of seaside resorts with above average levels of deprivation

<table>
<thead>
<tr>
<th>Domain</th>
<th>Total</th>
<th>Large resorts</th>
<th>Medium Resorts</th>
<th>Total</th>
<th>Large resorts</th>
<th>Medium Resorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index of Multiple Deprivation</td>
<td>41 (71)</td>
<td>21 (84)</td>
<td>20 (61)</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Employment</td>
<td>47 (81)</td>
<td>23 (92)</td>
<td>24 (73)</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Health and disability</td>
<td>46 (79)</td>
<td>23 (92)</td>
<td>23 (70)</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Income</td>
<td>44 (75)</td>
<td>23 (92)</td>
<td>21 (64)</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Education, skills and training</td>
<td>40 (69)</td>
<td>18 (72)</td>
<td>22 (67)</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Living environment</td>
<td>37 (64)</td>
<td>19 (76)</td>
<td>18 (55)</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Crime and disorder</td>
<td>25 (43)</td>
<td>14 (56)</td>
<td>10 (30)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Barriers to housing and services</td>
<td>25 (43)</td>
<td>12 (48)</td>
<td>13 (39)</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: Author’s own work

However, the intention here is not to evaluate how the resorts fare on the individual deprivation domains and relate to England as a whole. Rather, it is to illuminate the variation in domain rankings with respect to the overall Index of Deprivation between and within the
large and mid-sized seaside resorts. In this analysis, the domains within the Indices of Deprivation are split into two groups. In the first assessing the income, employment, and education, skills and training domains, as these three domains offer a guide to the more ‘economic’ dimension of exclusion in seaside resorts, and the second analysing the other four domains, which relate to the more ‘social’ and ‘neighbourhood’ dimensions of exclusion. This decision to divide the seven deprivation domains into the before mentioned groups both for the large and the mid-sized resorts reflects a pragmatic approach. As can be seen, there is a wealth of data located in Appendix Table A71 that is spread over seven pages. Consequently, when considering 58 seaside resorts and the seven deprivation domains against the overall Index of Multiple Deprivation at once, it is difficult to assess how deprivation varies between and within seaside resorts.

The radar charts on the following pages show relative resort-level deprivation as measured by each of these domains for both the large and the mid-sized seaside resorts within England. In the radar charts, each spoke represents one of the resorts. The resorts are ordered by Index of Multiple deprivation rank, so that the Index of Multiple Deprivation line appears to spiral from the middle (most deprived) outwards (less deprived). If the individual domains follow the pattern for Index of Multiple Deprivation, then they too will spiral out. If the rank for a domain is inside the spiral then the seaside resort is ranked relatively worse for that domain than for overall deprivation, if it is outside the spiral then it is ranked relatively better for that domain than for overall deprivation. It is important to remember that the rankings (i.e., rank of average LSOA rank) are for the large and the mid-sized seaside resorts and show how the resorts in each size category relate to one another and are not representative of how a seaside resort relates to England.

Considering first the 25 large seaside resorts, Blackpool is the most deprived resort on the overall Index of Multiple Deprivation and Christchurch is the least deprived resort. In terms of the ‘economic domains’, Figure 5.10 shows that these three domains of deprivation, whilst displaying some variation, were broadly in accordance with the Index of Multiple
Deprivation. Thus, resorts with high levels of overall deprivation tend to have high levels of employment, income and education, skills and training deprivation, while resorts that are relatively well ranked in terms of overall deprivation are generally well ranked across these three domains. This finding occurs in stark contrast to the four deprivation domains that are indicative of social and neighbourhood exclusion. Consider Figure 5.11, on the left of the figure it is noticeable that many larger seaside resorts with relatively good rankings of multiple deprivation have relatively poor rankings across the four domains. The right of the chart shows the reverse situation. Similar findings were found when the analyses were restricted to the 33 mid-sized seaside resorts – the most deprived seaside resort here is Skegness and least deprived is Formby. When comparing Figure 5.12 with Figure 5.13, it can be seen that there is more variation in the domain rankings pertaining to the social and neighbourhood dimensions of exclusion in mid-sized seaside resorts compared to economic aspects of exclusion. In short, these results show that the rankings for the domains do not always follow the Index of Multiple Deprivation. It is clear from the diagrams that some domains of deprivation affect individual seaside resorts more than others. Thus, the evidence indicates that seaside resorts face different types of deprivation and hence different needs that might undermine their performance as tourism destinations.
Figure 5.10: Ranking of the large seaside resorts for Index of Multiple Deprivation and (economic) domains, 2010

Source: Author’s own work
Figure 5.11: Ranking of the large seaside resorts for Index of Multiple Deprivation and (social) domains, 2010

Source: Author’s own work
Figure 5.12: Ranking of the mid-sized seaside resorts for Index of Multiple Deprivation and (economic) domains, 2010

Source: Author’s own work
Figure 5.13: Ranking of the mid-sized seaside resorts for Index of Multiple Deprivation and (social) domains, 2010

Source: Author’s own work
5.3.4 Summary of resort-level results

Section 5.3 has used a number of analytical techniques and approaches to shed further light on the occurrence, character, intensity and distribution of multiple deprivation in English seaside resorts. It began by investigating the nature and severity of deprivation within the 58 seaside resorts that corresponded to the 1,686 ‘resort LSOAs’. This investigation found that the vast majority of seaside resorts have at least one LSOA in the upper quartile of most deprived LSOAs of England when tested against seven domains of deprivation at LSOA level. In addition, a number of seaside resorts were identified as experiencing particular problems of multiple deprivation. This outcome was achieved by identifying resorts which had LSOAs in the highest deprivation quartile on at least five of the seven LSOA-level domains. In all, 289 LSOAs fell into this classification and are located within 39 individual resorts scattered around England.

In the second part of the section, attention turned to whether there were true differences in deprivation between large and mid-sized seaside resorts. A chi-square analysis was used to test the hypothesis that there is a relationship between the size of the resort and the incidence and level of multiple deprivation. The results of this analysis suggest that, although both the large and the mid-sized seaside resorts had higher levels of multiple deprivation than might be expected, the highest levels of multiple deprivation are associated with ‘large resort LSOAs’. This finding holds true when each domain is looked at separately. However, differences in the extent of deprivation across domains were not of a similar magnitude. The differences between resorts are greater for health and disability deprivation compared to other aspects of deprivation, while barriers to housing and services and income deprivation are much less significant. The section then went on to analyse variation in the nature of deprivation within the large and mid-sized seaside resorts by examining the correspondence of overall multiple deprivation with each of the seven specific aspects of deprivation contained within the Indices of Deprivation. The results of the correlational analysis indicate that strong positive relationships between variables exist in both large and mid-sized resorts, although the relationship between overall deprivation and barriers to
housing and services is confined to large resorts. Further analysis of the LSOA-level indicators of deprivation revealed that, although the overall deprivation pattern for the large and the mid-sized seaside resorts was not consistent across all domains, the geographic extent of deprivation in both the large and the mid-sized seaside resorts was broadly similar for 2004 and 2010.

In the third part of the section, the first set of analyses sought to ascertain whether the levels of multiple deprivation were similar between the resorts. Here, the LSOA data for the 25 large and the 33 mid-sized seaside resorts were looked at in quintile groups, to determine how the levels of deprivation in seaside resorts are distributed compared with those for England. In terms of the proportion of LSOAs in the most deprived quintile, the large seaside resorts (15/25) had higher levels of multiple deprivation than England, double the proportion of mid-sized seaside resorts (10/33). That said the geographic extent of multiple deprivation is greater in three of the mid-sized resorts than any of the large resorts. In addition, there are more mid-sized resorts with many areas of very low deprivation. Taken together, these results suggest that there is greater variation in the levels of deprivation in mid-sized seaside resorts. The second set of analyses sought to illuminate the variation in deprivation levels between and within resorts. This objective was achieved by summarising the range of Index of Multiple Deprivation national rankings for LSOAs in each resort and calculating the population-weighted average rank of deprivation. In terms of the former, 42 of the 58 seaside resorts have greater overall deprivation than the England average in 2010. Although this exercise confirms what is already known in that the large resorts score worse than mid-sized resorts, it has revealed some subtleties with regard to both the order of the resorts and the polarity and variation within resorts. The variation between the resorts was further explored by calculating the average rank of deprivation, which enabled the resorts to be ranked and a series of radar charts to be produced. These charts illustrate that the patterns for the domains differ, particularly the ‘social’ and neighbourhood’ aspects of deprivation, with some of the most deprived large and mid-sized seaside resorts having relatively low levels of deprivation for these domains. Thus, the rankings for the domains do not always follow the Index of Multiple Deprivation.
5.4 Summary

A principal objective of the present research was to shed light on the nature, intensity and distribution of multiple deprivation – or social exclusion – in English seaside resorts. This objective was achieved by using the seaside and non-seaside classification, relevant deprivation measures and small area geography. The analysis of data was conducted in three stages. The first stage of the work investigated whether local authority districts classified in this study as ‘seaside with resort’ differ from other district types, or from the general situation in England, with regard to a range of measures of deprivation (section 5.1). It was found that, when compared with ‘inland’, ‘coastal’ and ‘seaside without resort’ districts, ‘seaside with resort’ districts are associated with higher levels of multiple deprivation.

Second, a LSOA-level analysis of the 39 local authority districts classified as being ‘seaside with resort’ was completed in order to establish the extent to which characteristics associated with social exclusion occurred within seaside resorts and to ascertain the nature and severity of these characteristics (section 5.2). The study findings reveal that within ‘seaside with resort’ districts, those LSOAs that constitute the seaside resorts are where multiple deprivation is concentrated. Deprivation in employment, income, health, education, living environment and crime are greater problems in resort areas, while deprivation in housing and services is less prevalent. Further analysis showed that resort areas that score highly on the overall Index of Multiple Deprivation also tend to score highly on all aspects of deprivation simultaneously (with the exception of access to housing and services). These findings suggest that the majority of seaside resort LSOAs are experiencing similar types and high levels of multiple deprivation and as there are obvious links between deprivation types, it also appears that majority are suffering from social exclusion. Furthermore, it is clear from the 2004 to 2010 change analysis that many of the problems of multiple deprivation experienced by those areas have persisted.
The third and final stage of the work provided an account of how multiple deprivation varies between and within seaside resorts (section 5.3). The research found, by calculating the average LSOA rank for each resort, that there were higher levels of multiple deprivation in 2010 than the deprivation measures for England on average. Evidence of a relationship between the size of the resort and the incidence and level of multiple deprivation was detected. English seaside resorts, albeit of medium or large size, are experiencing similar problems of multiple deprivation, but large resorts tend to have significantly higher levels. However, mid-sized resorts exhibited a wider range of deprivation levels. Many of the commonly experienced deprivation problems are deeply embedded. They have persisted and intensified over the last decade. Taken together, the findings summarised here and the detailed insights within the chapter add to knowledge and understanding of the manifestation of social exclusion in English seaside resorts, which once thrived on seaside resort tourism.
Chapter 6

Resort Socio-economic Performance and Social Exclusion

Having identified the nature and extent of social exclusion in English seaside resorts, the next objective is to ascertain the influence of resort socio-economic performance on social exclusion. To address this objective, a comparative analysis of the national averages of a set of variables selected as measures of area factors and population composition for the 58 seaside resorts was undertaken, providing both insight into the socio-economic performance of resorts and the differences in performance between deprived and less deprived resorts. The analysis – based on the manipulation of available datasets at LSOA and ward level – sought to establish whether the variables operate as positive or negative influences and whether they have a large or significant effect. This analysis aids the understanding of the causes and consequences of exclusion, but it also enhances comprehension of the way in which place- and population-based factors might influence social exclusion in English seaside resorts. The results of these analyses are set out in Section 6.1.

Further insight may be gained, and the formulation of remedial policies advanced, by investigating the manifestation of social exclusion within local areas. The final objective, therefore, is to identify, classify and map deprived areas in England’s seaside resorts. To address this objective, the research employed PCA with forty variables selected as measures of area factors and population composition in the 399 ‘excluded seaside resort localities’. The PCA produced seven components with eigenvalues greater than 1.0 which together accounted for 78.7 per cent of the total variance. The 399 excluded resort localities by seven components matrix of component scores formed the data matrix for an agglomerative hierarchical cluster analysis. The cluster analysis suggested that the 399 excluded resort localities can be allocated to four clusters. Section 6.2 explores the composition and characteristics of each cluster. This section also presents findings on the variation in multiple deprivation between clusters and the distribution of excluded resort localities across the country. These analyses were undertaken to reveal the nature and incidence of localised problem complexes.
6.1 Assessment of the socio-economic structure and ‘health’ of resorts

Within this section, analysis is undertaken for the 58 seaside resorts in England split between the 25 most deprived resorts and 33 less deprived resorts. The most deprived resorts had higher levels of multiple deprivation than might be expected, in terms of the proportion of LSOAs falling within the most deprived national quintile (for details, see Figures 5.7 and 5.8). The aim of the analysis is to determine how the socio-economic performance of seaside resorts differs from that of England as a whole and provide an assessment of whether there are “true” differences in socio-economic performance between deprived and less deprived resorts. In order to assess performance, measures of population composition and measures of area factors were used (for details, see Tables 4.8 and 4.9).

6.1.1 Measures of population composition and dynamics

Table 6.1 presents a comparative analysis of the resorts’ position within England in terms of the incidence of the twenty-six indicators related to population composition. For five of these indicators, seaside resorts record lower scores compared to England as whole. The indicators include residents aged 0-15, residents of working age, single-parent households, and educated professionals, with the latter being measured by the percentage of residents with a degree qualification or above and who are employed as managers, professionals or para-professionals. With the exception of the latter two measures, which were respectively 5.1 and 4.1 percentage points below the national average, no difference greater than 4.0 was observed. Likewise, in terms of the twenty-one indicators on which seaside resorts record higher scores, the scale of the disparity between the seaside resort average and the English average is not particularly large. The indicators that showed the largest difference were low education (+7.2), white ethnic composition (+6.5), pensionable-age residents (+4.9) and one-person households above pensionable age (+4.1). Thus, for the most part, across seaside resorts as a whole, the mean values for measures of population composition are not fundamentally different to the English average.
Unrelated t-tests were used to explore the composition of the deprived and less deprived resorts in terms of the variables in Table 6.1. A t-test allows the mean for each group to be compared to the mean for all 58 seaside resorts. Where the differences between these two means are statistically significant, this result tells that a variable is more important (in either a positive or negative way) to the group than the 58 seaside resorts as a whole. Full results of the t-tests performed are available in Appendix Table B1. These results are summarised in Table 6.2, which indicates whether the population composition variables operate as resort advantages or disadvantages and whether they have a large or significant effect. By evaluating the number of significant differences and magnitude of each difference, it is possible to identify the factors that influence multiple deprivation – or social exclusion – in seaside resorts.

Table 6.2 shows that effect sizes were significant for all but two of the twenty-six variables ($p = \text{less than 0.05}$). No significant differences were found between the deprived and less deprived resorts in terms of ethnic composition and one person households. Regarding the twenty-four variables that had statistically significant effect sizes, eighteen variables record effect sizes that are meaningful on a practical level (i.e., Cohen’s $d = \text{more than 0.5}$). Effects on all eighteen variables were moderate, with deprived resorts having a higher than average score on sixteen variables. It was found that, in terms of employment, skills and qualifications, deprived seaside resorts have an above-average proportion of people employed in routine and low skill occupations (53.4%) and consequently a below-average proportion of professional and managerial workers (46.6%). Commensurately, the deprived seaside resorts have, on average, a higher proportion of persons with no qualifications (32.9%) and a lower proportion with a degree or higher (14.0%). Regarding worklessness/benefit dependency across deprived seaside resorts as a whole, the share of working age adults claiming the four main benefits for the non-employed (i.e., Jobseeker’s Allowance, Employment and Support Allowance, Income Support paid to lone parents, and Incapacity Benefit/Severe Disablement Allowance) is above average (18.0%). Incapacity claimants are the largest group of non-employed working age claimants. As far as health is concerned, there are more resort
residents than the average who receive state-funded welfare because of ill-health or disability problems (IB/SDA, 8%; DLA/AA, 6.7%; ESA, 2.8%). Claimant unemployment in deprived seaside resorts is also above average (JSA 4.7%), including long-term unemployment (>6 months, 1.8%; >12 months, 0.9%) and youth unemployment (1.3%). Regarding economic security, deprived seaside resorts have higher than average claimant rates in terms of the three main benefits for the economically disadvantaged (i.e., Child Tax-Credit paid to out-of-work families, 24.7%; Income Support paid to people who have low incomes and are not required to be available for employment, 7.6%; Guarantee Credit paid to pensioners living on low incomes, 11.5%). With respect to households within deprived seaside resorts, while the proportion of lone parent households is slightly above the average (10.2%), the proportion of children living in lone parent families is greater (32.7%). There is also an above-average incidence of households without access to a car or van (33.3%).

Thus, the deprived resorts are differentiated from the less deprived resorts by sixteen measures of population composition ($p = \text{less than 0.05} ; d = \text{more than 0.5}$). In general, the deprived resorts are characterised by problems in terms of: unemployment and disadvantaged occupational characteristics; lack of qualifications; poor health; poverty and lack of access to material resources; and, family breakdown. However, in relation to the sixteen differentiating variables, it is valuable to identify the extent to which the deprived resorts differ from the national average, in order to provide further insight into the incidence of each problem. This analysis revealed that six of the sixteen differentiating variables recorded a difference greater than 4.0. The variables identified include: no qualifications (+9.9); routine and low skill occupations (+7.1); lack of car/van (+6.5); out-of-work benefits (+5.5); children in lone parent families (+4.8); and, children in out-of-work families (+4.1). It may be the case therefore that these facets of population composition have more of a determining influence on social exclusion in seaside resorts.
Table 6.1: Comparative analysis of mean values for selected population composition variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>England Mean</th>
<th>English seaside resorts Mean n = 58 Std. D</th>
<th>Most deprived resorts Mean n = 25 Std. D</th>
<th>Less deprived resorts Mean n = 33 Std. D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age, 2001</td>
<td>38.6</td>
<td>41.6</td>
<td>40.5</td>
<td>42.9</td>
</tr>
<tr>
<td>Children, 2010</td>
<td>18.7</td>
<td>17.1</td>
<td>17.9</td>
<td>16.1</td>
</tr>
<tr>
<td>Working age, 2010</td>
<td>61.8</td>
<td>58.3</td>
<td>59.6</td>
<td>56.8</td>
</tr>
<tr>
<td>Pensioners, 2010</td>
<td>19.5</td>
<td>24.4</td>
<td>22.5</td>
<td>26.6</td>
</tr>
<tr>
<td>Retired, 2001</td>
<td>13.5</td>
<td>16.6</td>
<td>15.4</td>
<td>17.9</td>
</tr>
<tr>
<td>White, 2001</td>
<td>90.9</td>
<td>97.4</td>
<td>97.4</td>
<td>97.5</td>
</tr>
<tr>
<td>One person household, 2001</td>
<td>30.1</td>
<td>34.1</td>
<td>34.4</td>
<td>33.8</td>
</tr>
<tr>
<td>One person household pensionable age, 2001</td>
<td>14.4</td>
<td>18.5</td>
<td>17.7</td>
<td>19.4</td>
</tr>
<tr>
<td>One person household lone parent, 2001</td>
<td>9.5</td>
<td>9.3</td>
<td>10.2</td>
<td>8.3</td>
</tr>
<tr>
<td>Dependent children in lone parent families, 2010</td>
<td>27.9</td>
<td>29.8</td>
<td>32.7</td>
<td>26.5</td>
</tr>
<tr>
<td>IB/SDA claimants, 2010</td>
<td>5.2</td>
<td>7.1</td>
<td>8.0</td>
<td>6.2</td>
</tr>
<tr>
<td>ESA claimants, 2010</td>
<td>1.5</td>
<td>2.5</td>
<td>2.8</td>
<td>2.1</td>
</tr>
<tr>
<td>DLA/AA claimants, 2010</td>
<td>5.0</td>
<td>6.1</td>
<td>6.7</td>
<td>5.3</td>
</tr>
<tr>
<td>No qualification, 2001</td>
<td>23.0</td>
<td>30.2</td>
<td>32.9</td>
<td>27.1</td>
</tr>
<tr>
<td>Qualified to degree or higher, 2001</td>
<td>21.2</td>
<td>16.1</td>
<td>14.0</td>
<td>18.6</td>
</tr>
<tr>
<td>In managerial occupation, 2001</td>
<td>53.7</td>
<td>49.7</td>
<td>46.6</td>
<td>53.3</td>
</tr>
<tr>
<td>In manual occupation, 2001</td>
<td>46.3</td>
<td>50.3</td>
<td>53.4</td>
<td>46.7</td>
</tr>
<tr>
<td>Out-of-work benefits claimants, 2010</td>
<td>12.5</td>
<td>15.5</td>
<td>18.0</td>
<td>12.7</td>
</tr>
<tr>
<td>JSA claimants, 2010</td>
<td>3.6</td>
<td>4.0</td>
<td>4.7</td>
<td>3.1</td>
</tr>
<tr>
<td>JSA 6 months, 2010</td>
<td>1.4</td>
<td>1.5</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>JSA 12 months, 2010</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>JSA Youth, 2010</td>
<td>1.0</td>
<td>1.1</td>
<td>1.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Children in workless families, 2010</td>
<td>20.8</td>
<td>21.1</td>
<td>24.7</td>
<td>17.1</td>
</tr>
<tr>
<td>Income Support claimants, 2010</td>
<td>4.8</td>
<td>6.4</td>
<td>7.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Pension Credit claimants, 2010</td>
<td>8.0</td>
<td>10.0</td>
<td>11.5</td>
<td>8.2</td>
</tr>
<tr>
<td>Have no car or van, 2001</td>
<td>26.8</td>
<td>29.9</td>
<td>33.3</td>
<td>25.9</td>
</tr>
</tbody>
</table>

Source: Author’s own work
Table 6.2: Factors of population composition influencing deprivation in seaside resorts

<table>
<thead>
<tr>
<th>Factor</th>
<th>Resort advantage or disadvantage</th>
<th>Size of effect</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age, 2001</td>
<td>Advantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Children, 2010</td>
<td>Disadvantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Working age, 2010</td>
<td>Disadvantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Pensioners, 2010</td>
<td>Advantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Retired, 2001</td>
<td>Advantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>White, 2001</td>
<td>Advantage</td>
<td>Very small</td>
<td>No</td>
</tr>
<tr>
<td>One person household, 2001</td>
<td>Disadvantage</td>
<td>Very small</td>
<td>No</td>
</tr>
<tr>
<td>One person household above pensionable age, 2001</td>
<td>Advantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>One person household lone parent, 2001</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Dependent children in lone parent families, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>IB/SDA claimants, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>ESA claimants, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>DLA/AA claimants, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>No qualification, 2001</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Qualified to degree or higher, 2001</td>
<td>Advantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>In managerial occupation, 2001</td>
<td>Advantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>In manual occupation, 2001</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Out-of-work benefits claimants, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>JSA claimants, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>JSA 6 months, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>JSA 12 months, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>JSA Youth, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Children in workless families, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Income Support claimants, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Pension Credit claimants, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Have no car or van, 2001</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: In this table as well as in Table 6.5:

- Where a variable is labelled an **advantage**, it indicates that the **less deprived resorts** have, on average, higher scores on this variable than the 58 resorts as a whole.

- Where a variable is labelled a **disadvantage**, it indicates that the **deprived resorts** have, on average, higher scores on this variable than the 58 resorts as a whole.

Source: Author’s own work

Another facet of population composition is that of migration. To assess how the 25 deprived seaside resorts as a whole fare in terms of migration exchanges with the rest of the UK, Census 2001 data at the ward level was used. The data were aggregated to produce absolute flow values, from which rates were calculated. The analyses of data begin by focusing on all people and then examining the patterns by age. The figures, as shown in Table
6.3, are restricted to people moving from known origins within the UK, thus excluding people who had been living outside the UK one year before the census and also those who ticked the box on the census form indicating that they had no usual address then.

It can be seen from the data in Table 6.3 that, in the 12 months before the census, the 25 deprived seaside resorts combined recorded inflows from the rest of the UK totalling just over 140,000 people and outflows totalling nearly 132,000. As a result, deprived seaside resorts recorded an overall net gain of almost 9,000 from the rest of the UK. In terms of their total number of residents, the latter is equivalent to a gain of 0.62% in this one year (that is, an enlargement of 6.2% if this pattern was repeated across a full decade). Another way of portraying this pattern is to say that there were nearly eleven people moving to these 25 resorts for every ten people leaving them, as shown by the in/out ratio of 1.06. Further analysis showed that deprived seaside resorts have a lower net flow rate than England (0.72), all 58 English seaside resorts (0.79) and the 33 less deprived resorts combined (0.99). Therefore, in comparison to less deprived resorts, the gains that have been made in deprived resorts have been relatively marginal. However, these net migration figures disguise the size of the gross flows from which they result. When compared with less deprived resorts, deprived seaside resorts had the largest in and out flows, not only in absolute terms but also in relation to the resident population. Thus, the most striking result to emerge from the data is that there are substantial flows of migrants into and out of the deprived resorts and that, by comparison, net flow is small.

Table 6.3 also provides the same measures by age, based on groups that represent life stages associated with particular migration behaviour. In relation to the 58 seaside resorts combined and the 25 deprived resorts and the 33 less deprived resorts, all age groups recorded a net inflow. Furthermore, the net gains tend to come from the age groups 45 and over. This in-migration of the pre-retired and the retired will come as no surprise. Indeed, this pattern would appear to mirror the pattern of in-migration revealed by Beatty and Fothergill (2004).
Further analysis, however, of net in-migration to deprived and less deprived resorts, detected some subtle differences. It was found that:

- The under-16s account for 15% of migrants in seaside resorts, but for deprived resorts the figure is higher at 16% and for less deprived resorts it is lower at 14%.

- Those aged 16-29 and 30-44 account for 36% of migrants in seaside resorts, but for deprived resorts the figure is higher at 38% and for less deprived resorts it is lower at 35%.

- Those aged 45-59 and 60+ account for 49% of migrants in seaside resorts, though this figure is higher in the less deprived resorts at 51% and lower in deprived resorts at 46%.

So, the net in-migration to seaside resorts, including both deprived and less deprived resorts, is especially strong among those aged 45+. However, the less deprived resorts were found to have a proportionally greater number of migrants aged 45+ than the 58 seaside resorts as a whole. In contrast, the deprived resorts have higher proportions of their migrant population aged up to 15 and aged 16-44 than the 58 seaside resorts as a whole. These migrants will add to the working age population. The 16-44 year old age group is also the main child bearing age group and therefore it is also likely that the net increase of 0-15 year olds is linked to the net increase of 16-44 year olds. Although these differences appear relatively small, the cumulative effect over several years could help explain deprivation levels in seaside resorts. Indeed, although the inflow of older people creates and perpetuates a relatively old age distribution, this in-migration is important as many are drawn from more affluent groups (Shaw and Coles, 2007) and can fuel economic development. Thus, the inflow to resorts of children and young adults may exacerbate deprivation levels. In considering this analysis, it is worth re-iterating that, while above-average proportions of young and working-age residents operate as resort disadvantages (and an above-average proportion of persons of pensionable age a resort advantage), the effect of the population age structure on deprivation is small ($p = less than 0.05$).
<table>
<thead>
<tr>
<th>Measure</th>
<th>0-15</th>
<th>16-29</th>
<th>30-44</th>
<th>45-59</th>
<th>60+</th>
<th>All ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residents</td>
<td>9,901,581</td>
<td>8,630,216</td>
<td>11,127,511</td>
<td>9,279,693</td>
<td>10,199,830</td>
<td>49,138,831</td>
</tr>
<tr>
<td>Inflows</td>
<td>69,687</td>
<td>225,235</td>
<td>112,304</td>
<td>33,720</td>
<td>15,943</td>
<td>456,889</td>
</tr>
<tr>
<td>Outflows</td>
<td>16,439</td>
<td>40,548</td>
<td>23,715</td>
<td>11,549</td>
<td>8,519</td>
<td>100,770</td>
</tr>
<tr>
<td>Net flow</td>
<td>53,248</td>
<td>184,687</td>
<td>88,589</td>
<td>22,171</td>
<td>7,424</td>
<td>356,119</td>
</tr>
<tr>
<td>Inflow rate</td>
<td>0.70</td>
<td>2.61</td>
<td>1.01</td>
<td>0.36</td>
<td>0.16</td>
<td>0.93</td>
</tr>
<tr>
<td>Outflow rate</td>
<td>0.17</td>
<td>0.47</td>
<td>0.21</td>
<td>0.12</td>
<td>0.08</td>
<td>0.21</td>
</tr>
<tr>
<td>Net flow rate</td>
<td>0.54</td>
<td>2.14</td>
<td>0.80</td>
<td>0.24</td>
<td>0.07</td>
<td>0.72</td>
</tr>
<tr>
<td>In/out ratio</td>
<td>4.24</td>
<td>5.55</td>
<td>4.74</td>
<td>2.92</td>
<td>1.87</td>
<td>4.53</td>
</tr>
</tbody>
</table>

Migration for 58 seaside resorts combined

<table>
<thead>
<tr>
<th>Measure</th>
<th>0-15</th>
<th>16-29</th>
<th>30-44</th>
<th>45-59</th>
<th>60+</th>
<th>All ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residents</td>
<td>469,881</td>
<td>405,243</td>
<td>524,419</td>
<td>476,956</td>
<td>668,937</td>
<td>2,545,436</td>
</tr>
<tr>
<td>Inflows</td>
<td>47,184</td>
<td>93,066</td>
<td>58,761</td>
<td>29,639</td>
<td>31,116</td>
<td>259,766</td>
</tr>
<tr>
<td>Outflows</td>
<td>44,233</td>
<td>89,393</td>
<td>55,085</td>
<td>25,243</td>
<td>25,699</td>
<td>239,653</td>
</tr>
<tr>
<td>Net flow</td>
<td>2,951</td>
<td>3,673</td>
<td>3,676</td>
<td>4,396</td>
<td>5,417</td>
<td>20,113</td>
</tr>
<tr>
<td>Inflow rate</td>
<td>10.04</td>
<td>22.97</td>
<td>11.20</td>
<td>6.21</td>
<td>4.65</td>
<td>10.21</td>
</tr>
<tr>
<td>Outflow rate</td>
<td>9.41</td>
<td>22.06</td>
<td>10.50</td>
<td>5.29</td>
<td>3.84</td>
<td>9.42</td>
</tr>
<tr>
<td>Net flow rate</td>
<td>0.63</td>
<td>0.91</td>
<td>0.70</td>
<td>0.92</td>
<td>0.81</td>
<td>0.79</td>
</tr>
<tr>
<td>In/out ratio</td>
<td>1.07</td>
<td>1.04</td>
<td>1.07</td>
<td>1.17</td>
<td>1.21</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Migration for 25 most deprived resorts combined

<table>
<thead>
<tr>
<th>Measure</th>
<th>0-15</th>
<th>16-29</th>
<th>30-44</th>
<th>45-59</th>
<th>60+</th>
<th>All ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residents</td>
<td>265,287</td>
<td>222,994</td>
<td>288,141</td>
<td>256,275</td>
<td>335,430</td>
<td>1,368,127</td>
</tr>
<tr>
<td>Inflows</td>
<td>27,884</td>
<td>49,601</td>
<td>31,976</td>
<td>15,833</td>
<td>15,090</td>
<td>140,384</td>
</tr>
<tr>
<td>Outflows</td>
<td>26,508</td>
<td>47,667</td>
<td>30,663</td>
<td>14,080</td>
<td>12,972</td>
<td>131,890</td>
</tr>
<tr>
<td>Net flow</td>
<td>1,376</td>
<td>1,934</td>
<td>1,313</td>
<td>1,753</td>
<td>2,118</td>
<td>8,494</td>
</tr>
<tr>
<td>Inflow rate</td>
<td>10.51</td>
<td>22.24</td>
<td>11.10</td>
<td>6.18</td>
<td>4.50</td>
<td>10.26</td>
</tr>
<tr>
<td>Outflow rate</td>
<td>9.99</td>
<td>21.38</td>
<td>10.64</td>
<td>5.49</td>
<td>3.87</td>
<td>9.64</td>
</tr>
<tr>
<td>Net flow rate</td>
<td>0.52</td>
<td>0.87</td>
<td>0.46</td>
<td>0.68</td>
<td>0.63</td>
<td>0.62</td>
</tr>
<tr>
<td>In/out ratio</td>
<td>1.05</td>
<td>1.04</td>
<td>1.04</td>
<td>1.12</td>
<td>1.16</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Migration for 33 less deprived resorts combined

<table>
<thead>
<tr>
<th>Measure</th>
<th>0-15</th>
<th>16-29</th>
<th>30-44</th>
<th>45-59</th>
<th>60+</th>
<th>All ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residents</td>
<td>204,594</td>
<td>182,249</td>
<td>236,278</td>
<td>220,681</td>
<td>333,507</td>
<td>1,177,309</td>
</tr>
<tr>
<td>Inflows</td>
<td>19,300</td>
<td>43,465</td>
<td>26,785</td>
<td>13,806</td>
<td>16,026</td>
<td>119,382</td>
</tr>
<tr>
<td>Outflows</td>
<td>17,725</td>
<td>41,726</td>
<td>24,422</td>
<td>11,163</td>
<td>12,727</td>
<td>107,763</td>
</tr>
<tr>
<td>Net flow</td>
<td>1,575</td>
<td>1,934</td>
<td>2,363</td>
<td>2,643</td>
<td>3,299</td>
<td>11,619</td>
</tr>
<tr>
<td>Inflow rate</td>
<td>9.43</td>
<td>23.85</td>
<td>11.34</td>
<td>6.26</td>
<td>4.81</td>
<td>10.14</td>
</tr>
<tr>
<td>Outflow rate</td>
<td>8.66</td>
<td>22.90</td>
<td>10.34</td>
<td>5.06</td>
<td>3.82</td>
<td>9.15</td>
</tr>
<tr>
<td>Net flow rate</td>
<td>0.77</td>
<td>0.95</td>
<td>1.00</td>
<td>1.20</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>In/out ratio</td>
<td>1.09</td>
<td>1.04</td>
<td>1.10</td>
<td>1.24</td>
<td>1.26</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Note: Rate is the flow count as % of number of residents at the 2001 Census. In/out ratio is calculated by dividing the inflows by the outflows.

Source: Author’s own work
6.1.2 Measures of area factors

The analysis presented so far has highlighted a number of detailed insights, particularly in relation to the characteristics of population composition within deprived English seaside resorts. In order to provide further insight into the circumstances of these resorts, the deprived and less deprived were compared to each other in terms of the incidence of the twenty-three indicators related to area condition. Table 6.4 provides the means for each of the variables included in the analysis. Comparing the average data across 58 seaside resorts with the averages for England showed that:

- In terms of economic performance, the employment rate among 16 to 64 year olds in seaside resorts was 68.1%, compared to 74.1% for England. The share of employed residents who are self-employed is relatively similar in seaside resorts (8.9%) and England overall (8.3%). However, residents of seaside resorts are more likely to work part-time (42.3%) than residents of England (32.0%). Those in employment are engaged predominantly in tertiary industries (87.4%). Principal sources of employment are in ‘public administration, education and health’ (38.7% versus 28.2% in England) and in ‘accommodation, distribution and catering’ (25.8% versus 22.9% in England). Not surprisingly, jobs in tourism are over-represented in seaside resorts (12.2% versus 7.9% in England). Thus, the economic fortunes of residents are strongly linked to a few major service industries. Differences in income, as distinct from earnings or overall wealth (which is difficult to measure at resort level in the absence of small area level data), are a useful indicator of economic wellbeing. The average annually incomes of seaside resort households are markedly below the English average (£26,540 compared to £31,280).

- In terms of built environment, the housing stock is predominantly owner occupied (71.0% versus 68.7% in England). Levels of privately rented accommodation are also above average (15.9% versus 12.0% in England), with only 13.1% rented from the local authority (versus 19.3% in England). Household overcrowding rates correspond to the
English average. However, the incidence of housing lacking basic facilities and of empty households are both above the average. House price values can be seen as picking up on the condition of the built environment and place attractiveness. In seaside resorts, mean house prices were £187,330 compared to £239,642 in England. Another measure of how attractive an area is to live in is the crime rate. Specifically, crime rates are a measure of community safety and reflect economic circumstances. In terms of the number of crimes recorded as a proportion per 1,000 population, seaside resorts as a whole have a higher-than-average crime rate (152 versus 146 in England).

Overall, the data illustrate that there are differences between the average conditions of areas in seaside resorts and areas in the rest of England. However, as with the measures of population composition, the scale of the disparity between the seaside resort average and the English average is not always large. Of the twenty-three measures of area factors, just under half (n = 10) recorded a difference value greater than 4.0. In general, seaside resorts are markedly different in terms of: house price values (-21.8%); household incomes (-15.2%); public sector employment (+10.6%); part time/full time employment (+/-10.5%); social rented housing (-6.2%); employed persons (-6.1%); crime (+6.0%); tourism-related jobs (+4.3%); and, private rented housing (+4.1%). However, this general picture does not reflect the significant differences between the deprived and less deprived resorts. An analysis of the significant variables and the individual means for each group provides insights into the differences.

Thus, comparisons between the two groups were made using unrelated t-tests. Full results of the t-tests performed are available in Appendix Table B2. These results are summarised in Table 6.5, which indicates whether the area factors tend to operate as resort advantages or disadvantages and whether they have a large or significant effect on the relationship with deprivation level. Fifteen of the twenty-three variables were found to have a significant effect (p = less than 0.05). For the most part, no significant differences were found between the deprived and less deprived resorts in terms of diversity in the economy and
structure of employment. The exception to this generalisation was the rate of public sector employment. However, although deprived seaside resorts had significantly higher levels of public sector employment compared to less deprived resorts, the effect size was small.

In relation to the fifteen differentiating variables, mean effect sizes were very small to large. Effect sizes were significant but higher (i.e., $d = \text{more than 0.5}$) for seven variables. Compared to the seaside resort average, deprived seaside resorts have a lower-than-average employment rate (59.2%), a higher-than-average part-time employment rate (42.9%) and consequently a lower-than-average full-time employment rate (57.0%). Not surprisingly, average household incomes are below the average (£24,930). Apart from these variables, the deprived resorts are also differentiated from less deprived resorts in terms of having below-average house price values (£162,626), an above-average crime rate (181 crimes per 1,000 population) and above-average proportion of empty homes (4.3%). Excepting the latter, the indicators show marked differences when compared with the average for England: average house prices (-32.1%); crime rate (+24.0%); average household income (-23.0%); employment rate (-14.9%); full-time employment rate (-11.1%); part-time employment rate (+10.9%).
Table 6.4: Comparative analysis of mean values for selected area condition variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>England</th>
<th>English seaside resorts n = 58</th>
<th>Most deprived resorts n = 25</th>
<th>Less deprived resorts n = 33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Mean Std. D.</td>
<td>Mean Std. D.</td>
<td>Mean Std. D.</td>
</tr>
<tr>
<td>Emp. in primary industries, 2010</td>
<td>1.8</td>
<td>0.9 4.1</td>
<td>0.9 4.2</td>
<td>0.9 4.1</td>
</tr>
<tr>
<td>Emp. in secondary industries, 2010</td>
<td>13.1</td>
<td>11.7 14.4</td>
<td>11.2 14.3</td>
<td>12.3 14.5</td>
</tr>
<tr>
<td>Emp. in tertiary industries, 2010</td>
<td>85.1</td>
<td>87.4 15.1</td>
<td>88.0 15.0</td>
<td>86.8 15.1</td>
</tr>
<tr>
<td>Emp. in public sector, 2010</td>
<td>28.2</td>
<td>38.7 28.1</td>
<td>40.6 29.0</td>
<td>35.2 27.0</td>
</tr>
<tr>
<td>Emp. in hotel, catering, distribution sector, 2010</td>
<td>22.9</td>
<td>25.8 20.4</td>
<td>25.7 20.9</td>
<td>25.9 19.9</td>
</tr>
<tr>
<td>Employment in tourism-related jobs, 2010</td>
<td>7.9</td>
<td>12.2 15.4</td>
<td>12.0 15.2</td>
<td>12.5 15.6</td>
</tr>
<tr>
<td>LQ for public sector, 2010</td>
<td>1.0</td>
<td>1.2 0.2</td>
<td>1.3 0.2</td>
<td>1.2 0.2</td>
</tr>
<tr>
<td>LQ for hotel, catering and distribution sector, 2010</td>
<td>1.0</td>
<td>1.4 0.3</td>
<td>1.3 0.3</td>
<td>1.4 0.3</td>
</tr>
<tr>
<td>LQ for tourism, 2010</td>
<td>1.0</td>
<td>1.9 0.9</td>
<td>1.6 0.8</td>
<td>2.0 1.0</td>
</tr>
<tr>
<td>Employment rate, 2001</td>
<td>74.1</td>
<td>68.1 11.2</td>
<td>59.2 9.4</td>
<td>71.2 10.1</td>
</tr>
<tr>
<td>Full-time, 2010</td>
<td>68.1</td>
<td>57.6 12.8</td>
<td>57.0 13.0</td>
<td>58.4 12.4</td>
</tr>
<tr>
<td>Part-time, 2010</td>
<td>32.0</td>
<td>42.3 12.7</td>
<td>42.9 12.9</td>
<td>41.6 12.4</td>
</tr>
<tr>
<td>Self-employed, 2001</td>
<td>8.3</td>
<td>8.9 3.2</td>
<td>8.5 3.5</td>
<td>9.5 2.7</td>
</tr>
<tr>
<td>Household income, 2010</td>
<td>31,280</td>
<td>26,540 6,884</td>
<td>24,930 6,473</td>
<td>28,383 6,882</td>
</tr>
<tr>
<td>House prices, 2010</td>
<td>239,642</td>
<td>187,330 60,717</td>
<td>162,626 52,686</td>
<td>217,780 56,059</td>
</tr>
<tr>
<td>Owner-occupied housing, 2001</td>
<td>68.7</td>
<td>71.0 18.5</td>
<td>67.8 19.6</td>
<td>74.7 16.3</td>
</tr>
<tr>
<td>Social rented housing, 2001</td>
<td>19.3</td>
<td>13.1 16.0</td>
<td>15.5 18.2</td>
<td>10.4 12.5</td>
</tr>
<tr>
<td>Private rented housing, 2001</td>
<td>12.0</td>
<td>15.9 12.4</td>
<td>16.7 12.9</td>
<td>14.8 11.8</td>
</tr>
<tr>
<td>Overcrowded households, 2001</td>
<td>7.1</td>
<td>6.9 5.7</td>
<td>7.3 5.6</td>
<td>6.6 5.8</td>
</tr>
<tr>
<td>Households without central heating, 2001</td>
<td>8.5</td>
<td>10.7 7.9</td>
<td>11.7 8.8</td>
<td>9.5 6.6</td>
</tr>
<tr>
<td>Households lacking bath, shower or toilet, 2001</td>
<td>0.5</td>
<td>0.7 1.3</td>
<td>0.9 1.2</td>
<td>0.6 1.4</td>
</tr>
<tr>
<td>Vacant dwellings, 2001</td>
<td>3.4</td>
<td>3.7 2.0</td>
<td>4.3 2.2</td>
<td>3.0 1.4</td>
</tr>
<tr>
<td>Crime rate per 1,000, 2010</td>
<td>146</td>
<td>152 133</td>
<td>181 152</td>
<td>115 92</td>
</tr>
</tbody>
</table>

Source: Author’s own work
Table 6.5: Factors of area condition influencing deprivation in seaside resorts

<table>
<thead>
<tr>
<th>Factor</th>
<th>Resort advantage or disadvantage?</th>
<th>Size of effect</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emp. in primary industries, 2010</td>
<td>Advantage</td>
<td>Very small</td>
<td>No</td>
</tr>
<tr>
<td>Emp. in secondary industries, 2010</td>
<td>Advantage</td>
<td>Very small</td>
<td>No</td>
</tr>
<tr>
<td>Emp. in tertiary industries, 2010</td>
<td>Disadvantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Emp. in public sector, 2010</td>
<td>Disadvantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Emp. in hotel, catering, distribution sector, 2010</td>
<td>Advantage</td>
<td>Very small</td>
<td>No</td>
</tr>
<tr>
<td>Emp. in tourism-related jobs, 2010</td>
<td>Advantage</td>
<td>Very small</td>
<td>No</td>
</tr>
<tr>
<td>LQ for public sector, 2010</td>
<td>Disadvantage</td>
<td>Small</td>
<td>No</td>
</tr>
<tr>
<td>LQ for hotel, catering, distribution sector, 2010</td>
<td>Advantage</td>
<td>Small</td>
<td>No</td>
</tr>
<tr>
<td>LQ for tourism, 2010</td>
<td>Advantage</td>
<td>Small</td>
<td>No</td>
</tr>
<tr>
<td>Employment rate, 2010</td>
<td>Disadvantage</td>
<td>Large</td>
<td>Yes</td>
</tr>
<tr>
<td>Full-time, 2010</td>
<td>Advantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Part-time, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Self-employed, 2001</td>
<td>Advantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Household income, 2010</td>
<td>Advantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>House prices, 2010</td>
<td>Advantage</td>
<td>Large</td>
<td>Yes</td>
</tr>
<tr>
<td>Owner-occupied housing, 2001</td>
<td>Advantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Social rented housing, 2001</td>
<td>Disadvantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Private rented housing, 2001</td>
<td>Disadvantage</td>
<td>Very small</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcrowded households, 2001</td>
<td>Disadvantage</td>
<td>Very small</td>
<td>Yes</td>
</tr>
<tr>
<td>Households without central heating, 2001</td>
<td>Disadvantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Households lacking bath, shower or toilet, 2001</td>
<td>Disadvantage</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Vacant dwellings, 2001</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>Crime rate per 1,000, 2010</td>
<td>Disadvantage</td>
<td>Medium</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Source: Author’s own work

6.1.3 Summary of people and place effects

The outcome of the statistical analyses depicted in Tables 6.2 and 6.5 affords a clear indication of the socio-economic differences between deprived and less deprived seaside resorts in England. Evaluating the number of significant differences and magnitude of each difference enabled the factors influencing area-based deprivation to be identified. While two out of twenty-six (8%) population composition variables recorded an observed significance value above 0.05, eight of the twenty-three (35%) area condition variables fell into this category. Thus, twenty-four measures of population composition and fifteen indicators related to area condition differentiate the deprived and less deprived resorts. While seven out of fifteen (47%) area condition variables recorded an observed effect size above 0.50, eighteen out of the twenty-four (75%) population composition variables fell into this category. Thus, a
proportionally greater number of population composition variables recorded an observed effect size above 0.50. But two measures of area factors (employment rate, house price values) were found to have the largest effect sizes. Furthermore, when viewed against the English average, the deprived resorts registered markedly worse scores on a greater number of indicators related to area condition. Nonetheless, the evidence based on a statistical analysis of mean values for selected variables in deprived and less deprived resorts is pointing towards the relative significance of compositional effects (i.e., the demographic and socio-economic characteristics of the population that compose the resort) in reinforcing the problems of these urban areas. However, further insight into the causes and consequences of social exclusion within seaside resorts can be obtained by means of multivariate analytical techniques. In this respect, cluster analysis was applied to the data for those resort localities (n = 399) previously identified in the study as experiencing acute levels of multiple deprivation. The statistical results of a four-cluster solution are presented in Section 6.2.

6.2 Social exclusion at the intra-resort level – analysis of clusters

One-way analysis of variance (ANOVA) F-tests were used to explore the composition of each cluster in terms of the seven components identified in the PCA. ANOVA is a statistical procedure which compares different sources of variance within a dataset. The purpose of the comparison is to determine if significant differences exist between three or more groups. In SPSS, the one-way ANOVA output consists of three major parts – Descriptives, ANOVA and Multiple Comparisons. The table of means is the most helpful part of the output, because it provides a description of the LSOAs in each individual cluster, in terms of their average score and standard deviation on each of the seven dimensions in the data. Moreover, it allows the mean for each cluster to be compared to the mean for all 399 excluded localities. Table 6.6 provides the means for each of the principal components included in the analysis across each of the four clusters. Where a component is labelled positive for a cluster, it indicates that the LSOAs in the cluster have, on average, higher scores on this component than the excluded localities as a whole. Where a component is labelled negative for a cluster, it indicates that the LSOAs in the cluster have, on average, lower scores on this component than the excluded localities as a whole.
Table 6.6: Overview of clusters – cluster means and standard deviations for principal components

<table>
<thead>
<tr>
<th>Variable</th>
<th>High score on this component means:</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>Cluster 4</th>
</tr>
</thead>
</table>
| **Component 1** | High proportion of persons with no qualifications and consequently a lower proportion with a degree or higher.
High proportion of jobs held in manual occupations and consequently a lower proportion in professional/managerial and other white collar occupations
Lower than average household income
High proportion of children in out-of-work families
High proportion of white ethnic groups
High proportion of social rented housing | Positive
(\bar{x}) 0.3633
(σ) 0.9753 | Positive
(\bar{x}) 0.0341
(σ) 0.8033 | Negative
(\bar{x}) -0.0216
(σ) 1.1399 | Negative
(\bar{x}) -1.4584
(σ) 1.2044 |
| **Component 2** | High level of Jobseekers Allowance claimants
High level of youth unemployment
High level of long-term unemployment
High proportion of car-less households
High proportion of household spaces vacant | Positive
(\bar{x}) 1.2280
(σ) 0.9153 | Negative
(\bar{x}) -0.3202
(σ) 0.7053 | Negative
(\bar{x}) -0.3123
(σ) 0.8081 | Negative
(\bar{x}) -0.6457
(σ) 0.4673 |
| **Component 3** | High proportion claiming Incapacity Benefit/Severe Disability Allowance
High proportion claiming Disability Living Allowance
High proportion claiming Employment and Support Allowance
High proportion claiming Income Support
High proportion of older people claiming Pension Credit
High proportion of children in out-of-work families
High proportion of children in lone parent families
Low proportion of owner-occupied housing | Negative
(\bar{x}) -0.2249
(σ) 0.8941 | Positive
(\bar{x}) 0.1047
(σ) 0.9576 | Negative
(\bar{x}) -0.0004
(σ) 1.1337 | Negative
(\bar{x}) -0.2090
(σ) 1.3415 |
| **Component 4** | High proportion of persons of working age
Low proportion of persons of pensionable age, but many older people that are resident claim Pension Credit
Low average age
Low proportion of owner-occupied housing
High proportion of households living in overcrowded conditions
High proportion of car-less households
High proportion of population non-white | Positive
(\bar{x}) 0.2825
(σ) 0.7232 | Negative
(\bar{x}) -0.1466
(σ) 0.5524 | Negative
(\bar{x}) -1.1404
(σ) 1.4036 | Positive
(\bar{x}) 2.1307
(σ) 0.6693 |
<table>
<thead>
<tr>
<th>Component</th>
<th>Characteristics</th>
<th>Positive Mean</th>
<th>Negative Mean</th>
<th>Positive Mean</th>
<th>Positive Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Low proportion of persons of young age</td>
<td>(x̄) 0.4810 (σ) 0.7985</td>
<td>(x̄) -0.3916 (σ) 0.8279</td>
<td>(x̄) 1.0640 (σ) 1.2091</td>
<td>(x̄) 0.3416 (σ) 0.6478</td>
</tr>
<tr>
<td></td>
<td>High proportion of persons of pensionable age</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td></td>
<td>High average age</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td></td>
<td>High proportion of single-person households</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td></td>
<td>High proportion of single-person households with occupants above pensionable age.</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td>6</td>
<td>High proportion of self-employment</td>
<td>(x̄) -0.1140 (σ) 0.9775</td>
<td>(x̄) -0.2741 (σ) 0.5438</td>
<td>(x̄) 1.49855 (σ) 1.5661</td>
<td>(x̄) 0.5633 (σ) 0.9828</td>
</tr>
<tr>
<td></td>
<td>High proportion of jobs held in professional/managerial occupations</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td></td>
<td>High proportion of tourism-related jobs</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td></td>
<td>High proportion of private rented housing</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td></td>
<td>High proportion of households living in overcrowded conditions</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td></td>
<td>High proportion of households without sole use of bath, shower or toilet</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td></td>
<td>High levels of burglary, theft, criminal damage and violence</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td>7</td>
<td>High proportion of owner-occupied housing</td>
<td>(x̄) -0.0274 (σ) 1.0381</td>
<td>(x̄) 0.0832 (σ) 1.0101</td>
<td>(x̄) -0.0715 (σ) 0.7151</td>
<td>(x̄) -0.5515 (σ) 1.0123</td>
</tr>
<tr>
<td></td>
<td>High proportion of private rented accommodation and consequently a lower proportion social rented housing</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td></td>
<td>High proportion of households without central heating</td>
<td>(x̄)</td>
<td>(σ)</td>
<td>(x̄)</td>
<td>(σ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of LSOAs</td>
<td>% of LSOAs</td>
<td>Number of LSOAs</td>
<td>% of LSOAs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88 (22%)</td>
<td>243 (61%)</td>
<td>41 (10%)</td>
<td>27 (7%)</td>
</tr>
</tbody>
</table>

Note: Positive mean values are shaded yellow simply to aid comparison. Due to standardisation, the overall mean is 0.

Source: Author’s own work
The differences between the means of the clusters for each component in Table 6.6 are explored in Appendix Table B3, which offers F values and significance levels to show whether any of these mean differences are significant. The ‘between groups’ means are all significant ($p = \text{less than } 0.05$), indicating each of the seven components distinguish between the four clusters. However, the results from the one-way ANOVA do not indicate which of the four clusters differ from one another. So, to determine specifically which clusters are different from each other, post-hoc tests were performed. Full results of all multiple comparisons using Tukey’s post-hoc test are available in Appendix Table B4. This table lists homogeneous subsets (i.e., clusters that did not differ using $p = \text{less than } 0.05$). Thus, within each subgroup the difference in means is statistically insignificant. The results of the post-hoc comparisons indicate that:

- **On component 1** (i.e., white, working-class social housing neighbourhoods with disadvantages), cluster 4 is significantly different from all other clusters as it does not appear in a subset together with any of the clusters. Specifically, cluster 4 LSOAs score significantly lower than LSOAs in clusters 1, 2, and 3.

- **On component 2** (i.e., limited access to employment opportunities), cluster 1 is significantly different from all other clusters as it does not appear in a subset together with any of the clusters. Specifically, cluster 1 LSOAs score significantly higher than LSOAs in clusters 2, 3, and 4.

- **On component 3** (i.e., high levels of benefit claimants, much poor health), all four clusters appear in the same subset or group. Thus, the post-hoc Tukey test determined that there was not a statistically significant difference in the mean scores of the four clusters.

- **On component 4** (i.e., prime age demographic), because all four clusters differ significantly, there are four such subsets or groups, containing the cluster 3 (lowest), cluster 2 (low-mid), cluster 1 (mid-high) and cluster 4 (highest) LSOAs respectively.

- **On component 5** (i.e., older demographic profile), there are three subsets, containing cluster 2 (lowest), clusters 1 and 4 (mid-high) and cluster 3 (highest) LSOAs respectively. The mean of cluster 1 is not significantly different from the mean of cluster 4.

- **On component 6** (i.e., professionals, tourism jobs, private renters and poor housing conditions), there are three subsets. Clusters 1 and 2 do not differ significantly from one another, but score significantly lower than clusters 3 and 4. The mean for cluster 3 is significantly higher than the mean for cluster 4.

- **On component 7** (i.e., mixed private housing neighbourhoods with high levels of home ownership), there are two subsets. The mean for cluster 4 is significantly lower than the means for the other three clusters, which do not differ significantly from one another.
Table 6.7 provides an overview of the main differentiating components. The columns of Table 6.7 reflect the results obtained from the ANOVA where components that differentiate one cluster from others are presented, as well as components that, while not strongly differentiating a particular cluster, are important in understanding the overall differences. It is clear from this table that component 4 (i.e., prime age demographic) is important in determining the composition of all four clusters. Clusters 1 and 4 contain localities which scored highly against this measure, compared to the excluded resort LSOAs as a whole. In contrast, having a lower than average score on this measure helped determine which localities were in clusters 2 and 3. However, the majority of components are only important in determining the composition of one or two of the clusters. The most striking result to emerge from the data comparison relates to component 3 (i.e., high levels of benefit claimants, much poor health). This component is not important in determining which localities are in a cluster.
Table 6.7: Matrix of outcomes, individual components, four clusters

<table>
<thead>
<tr>
<th>Cluster 1</th>
<th>Differentiating components</th>
<th>Important components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Component 2 (+)</td>
<td>Component 1 (+)</td>
</tr>
<tr>
<td></td>
<td>Component 4 (+)</td>
<td>Component 3 (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Component 5 (+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Component 6 (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Component 7 (-)</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>Component 4 (-)</td>
<td>Component 1 (+)</td>
</tr>
<tr>
<td></td>
<td>Component 5 (-)</td>
<td>Component 2 (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Component 3 (+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Component 6 (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Component 7 (+)</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>Component 4 (-)</td>
<td>Component 1 (-)</td>
</tr>
<tr>
<td></td>
<td>Component 5 (+)</td>
<td>Component 2 (-)</td>
</tr>
<tr>
<td></td>
<td>Component 6 (+)</td>
<td>Component 3 (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Component 7 (-)</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>Component 1 (-)</td>
<td>Component 2 (-)</td>
</tr>
<tr>
<td></td>
<td>Component 4 (+)</td>
<td>Component 3 (-)</td>
</tr>
<tr>
<td></td>
<td>Component 6 (+)</td>
<td>Component 5 (+)</td>
</tr>
<tr>
<td></td>
<td>Component 7 (-)</td>
<td></td>
</tr>
</tbody>
</table>

(+) Mean values for components above average
(–) Mean values for components below average

Source: Author’s own work

The significant differences between the components for the clusters suggest the ways in which the clusters differ or on which classifying variables they are essentially based. To further assess the distinctiveness of the clusters, one-way ANOVA F-statistics were also calculated between each of the four clusters with respect to the original raw data relating to the forty variables analysed by the PCA. Appendix Table B5 shows that statistically significant differences were recorded among the four clusters for all forty variables. The main differentiating variables are shown in Table 6.8 and the mean values for variables included in the analysis are provided in Table 6.9. Calculation and plotting of Z-scores of these individual measures for each cluster enabled both the character of the clusters and the nature of localised problem complexes to be identified. The resulting cluster profiles are provided in Figures 6.1–4. Each profile is a radar chart with each spine representing a different variable. The numbers on the scale represent the difference from the mean value for that variable. The mean is denoted by the red ring at 0, the value of each variable for that cluster can be seen by the
amount that the blue line (showing the difference from the mean for each value) is above or below the red one. To facilitate the visualisation of the cluster profiles, the average points were connected.

This analysis makes it possible to describe each of the clusters. First, however, a word of caution is necessary. It is important to emphasise that the description of each group of LSOAs in terms of the original input variables does not necessarily mean that the resort localities comprising that cluster exhibit all of the characteristics that defined that cluster to the same degree, nor that there are not localities in other clusters that have the characteristics described for a cluster. The LSOAs in a cluster are defined by component scores that make them generally more like each other than members of other groups, but the way in which the original ONS census and other administrative data define the group of LSOAs is via a group average which is derived from the values for individual LSOAs comprising that group. When interpreting the character of the clusters it should also be remembered that the basis of comparison is with the sample average (i.e., all 399 excluded resort LSOAs), but the sample average itself is inevitably different from both the resort average (i.e., all 1,686 resort LSOAs in England) and the national average (i.e., all 32,482 LSOAs in England). It follows that the clusters might appear different if the base data were a set of national averages.
<table>
<thead>
<tr>
<th>Differentiating variables</th>
<th>Important variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td></td>
</tr>
<tr>
<td>Average age (+)</td>
<td>Residents of pensionable age (–)</td>
</tr>
<tr>
<td>Residents aged 0-15 (–)</td>
<td>Age dependency (–)</td>
</tr>
<tr>
<td>Residents of working age (+)</td>
<td>Population white (–)</td>
</tr>
<tr>
<td>Empty households (+)</td>
<td>Single person households (+)</td>
</tr>
<tr>
<td>Job Seekers Allowance claimants (+)</td>
<td>Single pensioner households (+)</td>
</tr>
<tr>
<td>JSA 6 months or more (+)</td>
<td>Single parent families (–)</td>
</tr>
<tr>
<td>JSA 12 months or more (+)</td>
<td>Employed as managers and professionals (–)</td>
</tr>
<tr>
<td>Job Seekers Allowance claimants 18-24 (+)</td>
<td>Employed as manual workers (+)</td>
</tr>
<tr>
<td></td>
<td>Employed in tourism (+)</td>
</tr>
<tr>
<td></td>
<td>Self-employed (–)</td>
</tr>
<tr>
<td></td>
<td>Average household income (–)</td>
</tr>
<tr>
<td></td>
<td>Owner-occupied (–)</td>
</tr>
<tr>
<td></td>
<td>Private-rented (+)</td>
</tr>
<tr>
<td></td>
<td>Social-rented (+)</td>
</tr>
<tr>
<td></td>
<td>Lacking/sharing basic amenities (+)</td>
</tr>
<tr>
<td></td>
<td>No central heating (–)</td>
</tr>
<tr>
<td></td>
<td>Overcrowded households (–)</td>
</tr>
<tr>
<td></td>
<td>Children in out-of-work families (+)</td>
</tr>
<tr>
<td></td>
<td>Income Support claimants (+)</td>
</tr>
<tr>
<td></td>
<td>Pension Credit claimants (+)</td>
</tr>
<tr>
<td></td>
<td>Incapacity Benefit claimants (+)</td>
</tr>
<tr>
<td></td>
<td>Employment/Support claimants (+)</td>
</tr>
<tr>
<td></td>
<td>Disability Living Allowance claimants (–)</td>
</tr>
<tr>
<td></td>
<td>Out-of-work benefit claimants (+)</td>
</tr>
<tr>
<td></td>
<td>No qualifications (+)</td>
</tr>
<tr>
<td></td>
<td>Level 4/5 qualifications (–)</td>
</tr>
<tr>
<td></td>
<td>No car (–)</td>
</tr>
<tr>
<td></td>
<td>Children in lone parent families (+)</td>
</tr>
<tr>
<td></td>
<td>Crime (+)</td>
</tr>
<tr>
<td>Cluster 2</td>
<td></td>
</tr>
<tr>
<td>Residents aged 0-15 (+)</td>
<td>Average age (–)</td>
</tr>
<tr>
<td>Residents of working age (–)</td>
<td>Residents of pensionable age (–)</td>
</tr>
<tr>
<td>Single person households (–)</td>
<td>Age dependency (+)</td>
</tr>
<tr>
<td>Private-rented (–)</td>
<td>Population white (+)</td>
</tr>
<tr>
<td>Lacking/sharing basic amenities (–)</td>
<td>Single person households (+)</td>
</tr>
<tr>
<td>Overcrowded households (–)</td>
<td>Single parent families (+)</td>
</tr>
<tr>
<td>Crime (–)</td>
<td>Employed as managers and professionals (–)</td>
</tr>
<tr>
<td></td>
<td>Employed as manual workers (+)</td>
</tr>
<tr>
<td></td>
<td>Employed in tourism (–)</td>
</tr>
<tr>
<td></td>
<td>Self-employed (–)</td>
</tr>
<tr>
<td></td>
<td>Average household income (–)</td>
</tr>
<tr>
<td></td>
<td>Owner-occupied (+)</td>
</tr>
<tr>
<td></td>
<td>Social-rented (+)</td>
</tr>
<tr>
<td></td>
<td>No central heating (–)</td>
</tr>
<tr>
<td></td>
<td>Empty households (–)</td>
</tr>
<tr>
<td></td>
<td>Children in out-of-work families (+)</td>
</tr>
<tr>
<td></td>
<td>Income Support claimants (+)</td>
</tr>
<tr>
<td></td>
<td>Pension Credit claimants (–)</td>
</tr>
<tr>
<td></td>
<td>Job Seekers Allowance claimants (–)</td>
</tr>
<tr>
<td></td>
<td>Job Seekers Allowance claimants 18-24 (–)</td>
</tr>
<tr>
<td></td>
<td>JSA 6 months or more (–)</td>
</tr>
<tr>
<td></td>
<td>JSA 12 months or more (–)</td>
</tr>
<tr>
<td></td>
<td>Incapacity Benefit claimants (–)</td>
</tr>
<tr>
<td></td>
<td>Employment/Support claimants (–)</td>
</tr>
<tr>
<td></td>
<td>Disability Living Allowance claimants (+)</td>
</tr>
<tr>
<td></td>
<td>Out-of-work benefit claimants (–)</td>
</tr>
<tr>
<td></td>
<td>No qualifications (+)</td>
</tr>
<tr>
<td></td>
<td>Level 4/5 qualifications (–)</td>
</tr>
<tr>
<td></td>
<td>No car (–)</td>
</tr>
<tr>
<td></td>
<td>Children in lone parent families (+)</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>Cluster 4</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Average age (+)</td>
<td>Residents aged 0-15 (-)</td>
</tr>
<tr>
<td>Residents of working age (-)</td>
<td>Population white (+)</td>
</tr>
<tr>
<td>Residents of pensionable age (+)</td>
<td>Single person households (+)</td>
</tr>
<tr>
<td>Age dependency (+)</td>
<td>Single parent families (-)</td>
</tr>
<tr>
<td>Single pensioner households (+)</td>
<td>Employed as managers and professionals (+)</td>
</tr>
<tr>
<td>Average household income (+)</td>
<td>Employed as manual workers (-)</td>
</tr>
<tr>
<td>Empty households (-)</td>
<td>Employed in tourism (+)</td>
</tr>
<tr>
<td>Pension Credit claimants (-)</td>
<td>Self-employed (+)</td>
</tr>
<tr>
<td>Level 4/5 qualifications (+)</td>
<td>Owner-occupied (+)</td>
</tr>
<tr>
<td>Children in lone parent families (-)</td>
<td>Private-rented (+)</td>
</tr>
<tr>
<td></td>
<td>Social-rented (-)</td>
</tr>
<tr>
<td></td>
<td>Lacking/sharing basic amenities (+)</td>
</tr>
<tr>
<td></td>
<td>No central heating (+)</td>
</tr>
<tr>
<td></td>
<td>Overcrowded households (+)</td>
</tr>
<tr>
<td></td>
<td>Children in out-of-work families (-)</td>
</tr>
<tr>
<td></td>
<td>Income Support claimants (-)</td>
</tr>
<tr>
<td></td>
<td>Job Seekers Allowance claimants (-)</td>
</tr>
<tr>
<td></td>
<td>Job Seekers Allowance claimants 18-24 (-)</td>
</tr>
<tr>
<td></td>
<td>JSA 6 months or more (-)</td>
</tr>
<tr>
<td></td>
<td>JSA 12 months or more (-)</td>
</tr>
<tr>
<td></td>
<td>Incapacity Benefit claimants (+)</td>
</tr>
<tr>
<td></td>
<td>Employment/Support claimants (+)</td>
</tr>
<tr>
<td></td>
<td>Disability Living Allowance claimants (+)</td>
</tr>
<tr>
<td></td>
<td>Out-of-work benefit claimants (+)</td>
</tr>
<tr>
<td></td>
<td>No qualifications (-)</td>
</tr>
<tr>
<td></td>
<td>No car (-)</td>
</tr>
<tr>
<td></td>
<td>Crime (+)</td>
</tr>
<tr>
<td></td>
<td>Average age (-)</td>
</tr>
<tr>
<td></td>
<td>Single pensioner households (+)</td>
</tr>
<tr>
<td></td>
<td>Single parent families (-)</td>
</tr>
<tr>
<td></td>
<td>Employed as managers and professionals (+)</td>
</tr>
<tr>
<td></td>
<td>Employed as manual workers (-)</td>
</tr>
<tr>
<td></td>
<td>Employed in tourism (+)</td>
</tr>
<tr>
<td></td>
<td>Self-employed (+)</td>
</tr>
<tr>
<td></td>
<td>Owner-occupied (-)</td>
</tr>
<tr>
<td></td>
<td>Social-rented (-)</td>
</tr>
<tr>
<td></td>
<td>No central heating (+)</td>
</tr>
<tr>
<td></td>
<td>Empty households (-)</td>
</tr>
<tr>
<td></td>
<td>Children in out-of-work families (-)</td>
</tr>
<tr>
<td></td>
<td>Income Support claimants (-)</td>
</tr>
<tr>
<td></td>
<td>Out-of-work benefit claimants (-)</td>
</tr>
<tr>
<td></td>
<td>Job Seekers Allowance claimants 18-24 (-)</td>
</tr>
<tr>
<td></td>
<td>JSA 6 months or more (-)</td>
</tr>
<tr>
<td></td>
<td>JSA 12 months or more (-)</td>
</tr>
<tr>
<td></td>
<td>Incapacity Benefit claimants (-)</td>
</tr>
<tr>
<td></td>
<td>Employment/Support claimants (-)</td>
</tr>
<tr>
<td></td>
<td>No car (+)</td>
</tr>
<tr>
<td></td>
<td>Children in lone parent families (-)</td>
</tr>
</tbody>
</table>

(+): Mean values for variables above average
(-): Mean values for variables below average

Source: Author’s own work
Table 6.9: Mean values for original input variables in four-cluster solution

<table>
<thead>
<tr>
<th>Variable</th>
<th>PC*</th>
<th>Clusters</th>
<th>Mean**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age</td>
<td>4.5</td>
<td>38.8</td>
<td>36.2</td>
</tr>
<tr>
<td>Young people</td>
<td>5</td>
<td>17.3</td>
<td>21.3</td>
</tr>
<tr>
<td>Working-age people</td>
<td>4</td>
<td>63.1</td>
<td>60.2</td>
</tr>
<tr>
<td>Pensionable age</td>
<td>4.5</td>
<td>19.6</td>
<td>18.5</td>
</tr>
<tr>
<td>Age dependency</td>
<td>4</td>
<td>59.7</td>
<td>66.9</td>
</tr>
<tr>
<td>Population ‘white’</td>
<td>1.4</td>
<td>96.5</td>
<td>97.6</td>
</tr>
<tr>
<td>Single person household</td>
<td>5</td>
<td>24.7</td>
<td>16.3</td>
</tr>
<tr>
<td>Single pensioner household</td>
<td>5</td>
<td>10.2</td>
<td>7.7</td>
</tr>
<tr>
<td>Lone parent household</td>
<td>5</td>
<td>12.9</td>
<td>14.5</td>
</tr>
<tr>
<td>Professional/managerial occupation</td>
<td>1.6</td>
<td>18.2</td>
<td>15.4</td>
</tr>
<tr>
<td>Other white collar occupation</td>
<td>1</td>
<td>20.1</td>
<td>21.2</td>
</tr>
<tr>
<td>Skilled manual occupation</td>
<td>1</td>
<td>12.8</td>
<td>13.6</td>
</tr>
<tr>
<td>Other manual occupation</td>
<td>1</td>
<td>48.9</td>
<td>49.7</td>
</tr>
<tr>
<td>Distribution, hotels and restaurants</td>
<td>***</td>
<td>29.7</td>
<td>24.1</td>
</tr>
<tr>
<td>Public admin</td>
<td>***</td>
<td>36.3</td>
<td>42.1</td>
</tr>
<tr>
<td>Tourism</td>
<td>6</td>
<td>15.2</td>
<td>8.5</td>
</tr>
<tr>
<td>Full-time work</td>
<td>***</td>
<td>56.6</td>
<td>57.0</td>
</tr>
<tr>
<td>Part-time work</td>
<td>***</td>
<td>43.4</td>
<td>42.6</td>
</tr>
<tr>
<td>Self-employed</td>
<td>6</td>
<td>6.6</td>
<td>6.5</td>
</tr>
<tr>
<td>Average household income</td>
<td>1</td>
<td>19,021</td>
<td>19,840</td>
</tr>
<tr>
<td>Owner-occupied</td>
<td>3,4</td>
<td>41.0</td>
<td>50.9</td>
</tr>
<tr>
<td>Private-rented</td>
<td>6,7</td>
<td>30.0</td>
<td>17.8</td>
</tr>
<tr>
<td>Social-rented</td>
<td>1,7</td>
<td>29.0</td>
<td>31.4</td>
</tr>
<tr>
<td>Lacking/sharing facilities</td>
<td>6</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>No central heating</td>
<td>7</td>
<td>15.9</td>
<td>15.8</td>
</tr>
<tr>
<td>Overcrowded conditions</td>
<td>4,6</td>
<td>12.7</td>
<td>9.7</td>
</tr>
<tr>
<td>Empty dwellings</td>
<td>2</td>
<td>8.6</td>
<td>5.4</td>
</tr>
<tr>
<td>Crime rank</td>
<td>6</td>
<td>7275.6</td>
<td>8464.0</td>
</tr>
<tr>
<td>Children living in out-of-work families</td>
<td>1,3</td>
<td>39.4</td>
<td>37.1</td>
</tr>
<tr>
<td>Income Support</td>
<td>3</td>
<td>12.2</td>
<td>12.2</td>
</tr>
<tr>
<td>Pension Credit</td>
<td>3,4</td>
<td>19.7</td>
<td>17.9</td>
</tr>
<tr>
<td>Out-of-work benefit claimants</td>
<td>2,3</td>
<td>31.6</td>
<td>26.4</td>
</tr>
<tr>
<td>Job Seekers Allowance</td>
<td>2</td>
<td>10.4</td>
<td>6.1</td>
</tr>
<tr>
<td>JSA as proportion of benefit claimants</td>
<td>2</td>
<td>32.6</td>
<td>23.0</td>
</tr>
<tr>
<td>JSA 6 months or more</td>
<td>2</td>
<td>4.6</td>
<td>2.4</td>
</tr>
<tr>
<td>JSA 12 months or more</td>
<td>2</td>
<td>2.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Youth unemployment</td>
<td>2</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Incapacity Benefit</td>
<td>3</td>
<td>12.4</td>
<td>12.3</td>
</tr>
<tr>
<td>Employment and Support Allowance</td>
<td>3</td>
<td>3.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Disability Living Allowance</td>
<td>3</td>
<td>9.2</td>
<td>9.6</td>
</tr>
<tr>
<td>No qualifications</td>
<td>1</td>
<td>40.6</td>
<td>39.7</td>
</tr>
<tr>
<td>Higher education</td>
<td>1</td>
<td>10.5</td>
<td>9.4</td>
</tr>
<tr>
<td>No car</td>
<td>2,4</td>
<td>54.5</td>
<td>42.4</td>
</tr>
<tr>
<td>Children in lone parent families</td>
<td>3</td>
<td>44.8</td>
<td>42.5</td>
</tr>
</tbody>
</table>

* Variables related to principal components.
** Mean values of all dataset with regard to the variable.
*** Four variables that were removed from the PCA and not included in the cluster analysis, but included here because of their relevance to resort socio-economic performance.

Cells with text in bold indicate variables which strongly characterise the clusters (see Table 6.8).

Source: Author’s own work
Figure 6.1: Cluster profile for cluster 1

Source: Author’s own work
Figure 6.2: Cluster profile for cluster 2

Source: Author’s own work
Figure 6.3: Cluster profile for cluster 3

Source: Author’s own work
Figure 6.4: Cluster profile for cluster 4

Source: Author’s own work
Cluster 1 is the second largest cluster group incorporating 88 excluded seaside resort localities or 22% of the total. Significantly, this cluster is differentiated from other groups by a slightly above-average score for component 4 (prime age demographic) and very high score for component 2 (limited access to employment opportunities). The demographic structure is characterised by an above-average proportion of residents of working age and a below-average proportion of young people and persons of pensionable age. However, the differentiating variables with high values correspond to component 2. The cluster is significantly different from others in terms of an above-average proportion of empty dwellings and an above-average proportion of Jobseekers Allowance claimants, including long-term unemployment and youth unemployment. Apart from these variables which strongly differentiate this cluster from the three others, the localities are also characterised by above-average proportions of census measures that have been used to identify social and economic disadvantages of various kinds. These measures include routine and low-skill occupations, lack of qualifications, lack of a car or van, children in lone-parent families, children in out-of-work families, accommodation lacking basic facilities and overcrowded households. Not surprisingly, given the unemployment associated with this cluster, it has the lowest level of household income and highest level of out-of-work benefit claimants.

Problem complex: Unemployed households with low incomes and social disadvantages.

Cluster 2 is by far the largest cluster of excluded seaside resort localities in this study (243 localities, 61%). Characterised by its averageness, this group has few values which are high or low in comparison to the other groups. However, the cluster is significantly different from others in terms of mean values for components 4 and 5. The negative status of both the ‘older demographic profile’ component and the ‘prime age demographic’ component suggest there are fewer residents of working-age and older people, and more children and young people than on average. The proportion of children living in out-of-work families is above the mean as is the proportion of children in lone-parent families. In fact, this cluster exhibits the highest incidence of lone-parent households. It also exhibits the highest incidence of social
housing (and lowest incidence of private-rented housing), although the proportion of households lacking/sharing amenities and living in overcrowded conditions is below average. Crime is also less of an issue than in excluded localities as a whole.

Problem complex: Social housing neighbourhoods with young population in unstable families.

Cluster 3 consisted of 41 excluded seaside resort localities (or 10% of the total) and is differentiated from others in terms of an extremely low score on component 4, extremely high score on component 5 and extremely high score on component 6. The negative status of the ‘prime age demographic’ component and positive status of the ‘older demographic profile’ component indicate this cluster is characterised by an elderly age structure with few persons in the 0-15 age group and a below-average proportion of persons of working age. Indeed, the cluster has the highest average age and demographic dependency rate of any cluster. There is also an above-average incidence of single-person households with occupants above pensionable age. Poorer than average health is associated with an older population. As well as having the highest score for people over pensionable age, the cluster includes both the highest proportion of working age residents claiming Incapacity Benefit and the highest proportion of working age residents claiming Disability Living Allowance. Occupations tend to be in the higher managerial and professional groups and in distribution, hotels and restaurants (including tourism) and of these many part-time. In terms of housing, the incidence of owner-occupied housing is the highest of any cluster. Levels of privately rented accommodation and households living in overcrowded conditions, lacking/sharing amenities and without central heating are also above average, though not as much so as cluster 4.

Problem complex: Older population, lower unemployment but higher health-related problems.

Cluster 4, the smallest of the cluster groups (27 localities, 7%), is differentiated from others in terms of having the highest score on the ‘prime age demographic’ component. The predominance of working-age residents means that there are few young people and people
over pensionable age. Minority ethnic groups (that is, ethnic groups other than white) form a much larger percentage of the population of the cluster than they do of the population of any other cluster and the excluded resort localities as a whole. Apart from these demographic variables which strongly differentiate this cluster from the three others, the cluster is also differentiated by a number of housing-related variables. Places in this group are particularly characterised by persons living alone, many renting privately, and housing conditions in particular are poor. Indeed, the cluster has the highest proportions of any cluster in terms of people living in rented accommodation (which accounts for the negative status of the ‘mixed private housing neighbourhoods with high levels of home ownership’ component), one person households but conversely households living in overcrowded accommodation (defined as more than one person per room) and households with no central heating and lacking/sharing basic amenities. Crime is also more of an issue than in any other cluster and in excluded localities as a whole. However, illustrating the cluster’s advantaged position, the cluster is differentiated from others in terms of lower levels of benefit claimants/poorer health (although many older people that are resident claim Pension Credit), an above-average level of household income and few working-age residents with no educational qualifications.

Problem complex: Areas in flux with ethnic minorities, solo living and private renters living in poor housing conditions.

Thus, a statistical analysis of the composition and characteristics of the clusters has revealed the nature of particular problem complexes. Before proceeding to examine the geographic incidence of each problem, an important question requires attention. The question is whether some clusters are more deprived than others. To assess whether there are true differences in deprivation level between the clusters, the LSOAs comprising each cluster were allocated to a five per cent band (i.e., most deprived 0-5% of all LSOAs, 5-10%, 10-15% and 15-20%) based on their rankings calculated in the IMD 2010 and a cross-tabulation and chi-square analysis was undertaken. This analysis found that there are significant differences between the clusters ($\chi^2 = 16.9$, df = 9, $p = 0.037$) as cluster 1 exhibited higher levels of
multiple deprivation than might be expected. It can be seen from the data in Table 6.10 that 26.8% of LSOAs in the sample fell within the worst performing 5% of LSOAs in England on the IMD 2010, but for cluster 1 LSOAs the figure is higher at 40.9% and for each of the other clusters the figure is lower. Furthermore, when viewed against the most deprived 0-10%, cluster 1 emerges as the most deprived cluster (68.2%), followed by cluster 2 (48.5%), cluster 3 (43.9%) and cluster 4 (40.9%). A similar distribution pattern is evident regarding the most deprived 0-15%. Thus, cluster 1 is the worst off in terms of multiple deprivation and cluster 4 is the least deprived of the clusters. In considering this finding, it is worth reiterating that 24% of all resort LSOAs are in the worst performing 20% nationally and have been included in this analysis.

Table 6.10: Distribution of most deprived resort LSOAs by cluster and deprivation level

<table>
<thead>
<tr>
<th>Deprivation level</th>
<th>Cluster 1 n = 88, 22%</th>
<th>Cluster 2 n = 243, 61%</th>
<th>Cluster 3 n = 41, 10%</th>
<th>Cluster 4 n = 27, 7%</th>
<th>Total 399</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5% Observed</td>
<td>36</td>
<td>56</td>
<td>10</td>
<td>5</td>
<td>107</td>
</tr>
<tr>
<td>Expected</td>
<td>23.6</td>
<td>65.2</td>
<td>11.0</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>% within cluster</td>
<td>40.9%</td>
<td>23.0%</td>
<td>24.4%</td>
<td>18.5%</td>
<td>26.8</td>
</tr>
<tr>
<td>5-10% Observed</td>
<td>24</td>
<td>62</td>
<td>8</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>Expected</td>
<td>22.1</td>
<td>60.9</td>
<td>10.3</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>% within cluster</td>
<td>27.3%</td>
<td>25.5%</td>
<td>19.5%</td>
<td>22.2%</td>
<td>25.1</td>
</tr>
<tr>
<td>10-15% Observed</td>
<td>17</td>
<td>62</td>
<td>11</td>
<td>8</td>
<td>98</td>
</tr>
<tr>
<td>Expected</td>
<td>21.6</td>
<td>59.7</td>
<td>10.1</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>% within cluster</td>
<td>19.3%</td>
<td>25.5%</td>
<td>26.8%</td>
<td>29.6%</td>
<td>24.6</td>
</tr>
<tr>
<td>15-20% Observed</td>
<td>11</td>
<td>63</td>
<td>12</td>
<td>8</td>
<td>94</td>
</tr>
<tr>
<td>Expected</td>
<td>20.7</td>
<td>57.2</td>
<td>9.7</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>% within cluster</td>
<td>12.5%</td>
<td>25.9%</td>
<td>29.3%</td>
<td>29.6%</td>
<td>23.6</td>
</tr>
</tbody>
</table>

Source: Author’s own work

Mapping at LSOA level enabled the geography of particular problem complexes to be identified (Figure 6.5). This objective was achieved in ArcMap (a geographic information system programme) and by grouping the constituent LSOAs of each affected resort and using the centroid of the group as the location for a pie chart to represent each resort. Thus, to facilitate the visualisation of the classification, each resort has a pie chart and the total value of the pie is equal to the sum of the combined number of LSOAs in each cluster. Table 6.11 provides this information and the breakdown of LSOAs according to cluster for each resort. For example, the resort of Great Yarmouth had 11 LSOAs in cluster 1 and 5 LSOAs in cluster...
2, thus giving a total of 16 resort LSOAs (or 44% of the resort total) affected by high levels of multiple deprivation. It follows that the pie chart for Great Yarmouth is comprised of two sectors representing the values of cluster 1 (i.e., (11 / 16) * 100 = 68.8%) and cluster 2 (i.e., (5 / 16) * 100 = 31.2%). The mapping procedure described represents a necessary but less than satisfactory methodological compromise. The preferred method for illuminating the national pattern of excluded resort locality types is mapping using the geographic extent of all LSOAs. An attempt was made to map the 1,686 resort LSOAs, including the 399 excluded resort localities, but the small number of LSOAs meant that they did not appear visible on a national map in A4 size. Indeed, there are problems with the mapping of LSOAs. As previous typological investigations have reported, ‘mapping at such a small scale has inherent scaling problems, problems wrapped up in the design of the LSOAs and problems in adding locational information to aid the identification of places along with the information about the classification membership’ (Vickers et al., 2005: 61).
Figure 6.5: The national pattern of excluded resort locality types
Source: Author’s own work
Table 6.11: Number of LSOAs in each resort in each cluster

<table>
<thead>
<tr>
<th>Resort</th>
<th>Size</th>
<th>District</th>
<th>Region</th>
<th>Cluster</th>
<th>Resort LSOAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skegness</td>
<td>M</td>
<td>East Lindsey</td>
<td>EM</td>
<td>1 2 3 4</td>
<td>12</td>
</tr>
<tr>
<td>Dover</td>
<td>M</td>
<td>Dover</td>
<td>SE</td>
<td>9 1 10 18</td>
<td>55.6</td>
</tr>
<tr>
<td>Heysham</td>
<td>M</td>
<td>Lancaster</td>
<td>NW</td>
<td>1 5</td>
<td>11</td>
</tr>
<tr>
<td>Margate</td>
<td>L</td>
<td>Thanet</td>
<td>SE</td>
<td>5 9</td>
<td>27</td>
</tr>
<tr>
<td>Fleetwood</td>
<td>M</td>
<td>Wyre</td>
<td>NW</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Blackpool</td>
<td>L</td>
<td>Blackpool</td>
<td>NW</td>
<td>4 34 8 46</td>
<td>48.9</td>
</tr>
<tr>
<td>Penzance</td>
<td>M</td>
<td>Penwith</td>
<td>SW</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Hastings</td>
<td>L</td>
<td>Hastings</td>
<td>SE</td>
<td>9 14 1 24</td>
<td>45.3</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>L</td>
<td>Great Yarmouth</td>
<td>E</td>
<td>11 5</td>
<td>16</td>
</tr>
<tr>
<td>South Shields</td>
<td>L</td>
<td>South Tyneside</td>
<td>NE</td>
<td>23 1</td>
<td>24</td>
</tr>
<tr>
<td>Ramsgate</td>
<td>L</td>
<td>Thanet</td>
<td>SE</td>
<td>3 7</td>
<td>10</td>
</tr>
<tr>
<td>Ilfracombe</td>
<td>M</td>
<td>North Devon</td>
<td>SW</td>
<td>1 2</td>
<td>3</td>
</tr>
<tr>
<td>Folkestone</td>
<td>L</td>
<td>Shepway</td>
<td>SE</td>
<td>3 7 1</td>
<td>11</td>
</tr>
<tr>
<td>Scarborough</td>
<td>L</td>
<td>Scarborough</td>
<td>Y&H</td>
<td>4 7 1</td>
<td>12</td>
</tr>
<tr>
<td>Clacton-on-Sea</td>
<td>L</td>
<td>Tendring</td>
<td>E</td>
<td>4 6 1</td>
<td>11</td>
</tr>
<tr>
<td>Morecambe</td>
<td>M</td>
<td>Lancaster</td>
<td>NW</td>
<td>2 5</td>
<td>7</td>
</tr>
<tr>
<td>Brighton</td>
<td>L</td>
<td>Brighton and Hove</td>
<td>SE</td>
<td>15 1 13 29</td>
<td>101.8</td>
</tr>
<tr>
<td>Lowestoft</td>
<td>L</td>
<td>Waveney</td>
<td>E</td>
<td>6 5 1</td>
<td>12</td>
</tr>
<tr>
<td>Weston-s-mare</td>
<td>L</td>
<td>North Somerset</td>
<td>SW</td>
<td>10 3</td>
<td>13</td>
</tr>
<tr>
<td>Weymouth</td>
<td>L</td>
<td>Weymouth & Portland</td>
<td>SW</td>
<td>6 2</td>
<td>8</td>
</tr>
<tr>
<td>Torquay</td>
<td>L</td>
<td>Torbay</td>
<td>SW</td>
<td>2 7 2</td>
<td>11</td>
</tr>
<tr>
<td>Littlehampton</td>
<td>M</td>
<td>Arun</td>
<td>SE</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Whitby</td>
<td>M</td>
<td>Scarborough</td>
<td>Y&H</td>
<td>1 1</td>
<td>2</td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>L</td>
<td>Southend-on-Sea</td>
<td>E</td>
<td>3 19 1</td>
<td>23</td>
</tr>
<tr>
<td>Falmouth</td>
<td>M</td>
<td>Carrick</td>
<td>SW</td>
<td>1 2</td>
<td>3</td>
</tr>
<tr>
<td>Bognor Regis</td>
<td>M</td>
<td>Arun</td>
<td>SE</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>New Brighton</td>
<td>M</td>
<td>Wirral</td>
<td>NW</td>
<td>2 2</td>
<td>10</td>
</tr>
<tr>
<td>Crosby</td>
<td>L</td>
<td>Sefton</td>
<td>NW</td>
<td>2 4</td>
<td>6</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>L</td>
<td>Eastbourne</td>
<td>SE</td>
<td>7 1 2</td>
<td>10</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>L</td>
<td>Bournemouth</td>
<td>SW</td>
<td>11 6</td>
<td>17</td>
</tr>
<tr>
<td>Paignton</td>
<td>L</td>
<td>Torbay</td>
<td>SW</td>
<td>4 1</td>
<td>5</td>
</tr>
<tr>
<td>Bexhill-on-Sea</td>
<td>L</td>
<td>Rother</td>
<td>SE</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Herne Bay</td>
<td>M</td>
<td>Canterbury</td>
<td>SE</td>
<td>2 1</td>
<td>3</td>
</tr>
<tr>
<td>Hove</td>
<td>L</td>
<td>Brighton and Hove</td>
<td>SE</td>
<td>6 2 8 63</td>
<td>12.7</td>
</tr>
<tr>
<td>Dawlish</td>
<td>M</td>
<td>Teignbridge</td>
<td>SW</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ryde</td>
<td>M</td>
<td>Isle of Wight</td>
<td>SE</td>
<td>1 1</td>
<td>2</td>
</tr>
<tr>
<td>Teignmouth</td>
<td>M</td>
<td>Teignbridge</td>
<td>SW</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Whitstable</td>
<td>M</td>
<td>Canterbury</td>
<td>SE</td>
<td>2 2</td>
<td>21</td>
</tr>
<tr>
<td>Southsea</td>
<td>L</td>
<td>Portsmouth</td>
<td>SE</td>
<td>3 3 32</td>
<td>9.4</td>
</tr>
<tr>
<td>Burnham-on-Sea</td>
<td>M</td>
<td>Sedgemoor</td>
<td>SW</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Newquay</td>
<td>M</td>
<td>Restormel</td>
<td>SW</td>
<td>1 1</td>
<td>14</td>
</tr>
<tr>
<td>Lytham St Annes</td>
<td>L</td>
<td>Fylde</td>
<td>NW</td>
<td>1 1 2</td>
<td>30</td>
</tr>
<tr>
<td>Southport</td>
<td>L</td>
<td>Sefton</td>
<td>NW</td>
<td>2 2</td>
<td>4 60</td>
</tr>
<tr>
<td>Exmouth</td>
<td>M</td>
<td>East Devon</td>
<td>SW</td>
<td>1 1</td>
<td>21</td>
</tr>
<tr>
<td>Thornton-Cleveleys</td>
<td>M</td>
<td>Wyre</td>
<td>NW</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Christchurch</td>
<td>L</td>
<td>Christchurch</td>
<td>SW</td>
<td>1 1</td>
<td>30</td>
</tr>
</tbody>
</table>

Source: Author’s own work
This analysis found that the 399 ‘excluded resort localities’ related to 46 (out of 58) seaside resorts and that 40 of these resorts contain excluded localities characterised by ‘social housing neighbourhoods with young population living in unstable families’ (cluster 2). Thus, this group is well-scattered across the seaside resorts of the country but particularly in the Southeast, in the Northwest and the Southwest. Furthermore, when viewed against the total number of ‘excluded resort localities’ located in each English region, the Northwest (62/83, 75%), the Southwest (51/72, 72%), the Southeast (84/137, 61%), Yorkshire and the Humber (8/14, 57%) and the East (35/62, 57%) appear to be suffering more from this form of local area exclusion than the East Midlands (2/7, 29%) and the Northeast (1/24, 4%). Deprived areas characterised by ‘older population, lower unemployment but higher health-related problems’ (cluster 3) corresponded to 22 seaside resorts and had a locus mainly in the Southwest, the Southeast and the Northwest. Although it may appear at first glance that these regions appear to be suffering more from this form of local area exclusion, this regional pattern may be explained by the fact that there are more resorts and therefore more incidences of this exclusion type. Indeed, when viewed against the total number of ‘excluded resort localities’ located in each English region, a proportionally greater number of localities occurred in the East Midlands (5/7, 71%), followed by the Southwest (12/72, 17%), Yorkshire and the Humber (2/14, 14%), the Northwest (9/83, 11%), the Southeast (10/137, 7%) and the East (3/62, 5%). Households experiencing the most severe social and economic problems were grouped into cluster 1 which manifested itself in 19 resorts, but revealed a particularly strong incidence in resorts located in the East, the Northeast and the Southeast. Again, when viewed against the total number of ‘excluded resort localities’ located in each English region, the Northeast (23/24, 96%) was suffering more from this form of local area exclusion than the East (24/62, 39%), Yorkshire and the Humber (4/14, 29%), the Southeast (23/137, 17%), the Northwest (11/83, 13%) and the Southwest (3/72, 4%). Finally, cluster 4 reflected a grouping of deprived ‘areas in flux with ethnic minorities, solo living and private renters in poor housing’ and was concentrated in 6 resorts located in the Southeast (20/137, 15%), the Southwest (6/72, 8%) and Northwest (1/83, 1%).
Thus, the outcome of the univariate statistical analyses (Table 6.11) and mapping exercise depicted in Figure 6.5 sheds light on the geographic incidence of each problem complex. It shows the extent to which excluded resort localities are scattered across the country, rather than being confined to specific coastal regions. But it also shows a marked geographical variation between the coastal regions. Indeed, some clusters appear to be much more prevalent in some regions than others. Regarding the largest cluster, representing ‘social housing neighbourhoods with young population living in unstable families’, no coastal region was unaffected by this form of local area exclusion, but a proportionally lower number of such excluded resort localities occurred in the Northeast and East Midlands. With respect to the second largest and most deprived cluster, representing ‘unemployed households with low incomes and social disadvantages’, while being widely scattered around England, it revealed a particularly strong incidence in resorts located along the east coast regions, particularly the Northeast. The geography of the localities characterised by ‘older population, lower unemployment but higher health-related problems’ is also nationally widespread, but a proportionally greater number of such excluded resort localities occurred in the East Midlands and its resort of Skegness. Finally, ‘areas in flux with ethnic minorities, solo living and private renters in poor housing’ were confined to resorts in three English regions, namely the Southeast, the Southwest and Northwest. However, most localities in this group were found in resorts located on England’s southeast coast.

Further interrogation of the LSOA-level data (in Table 6.11) revealed the complexity of the problems that resorts with higher levels of multiple deprivation appear to be experiencing. Indeed, groupings of factors to do with local area exclusion emerge in the 25 resorts previously identified in the study as most deprived, but in different combinations. It was found that, of the 399 LSOAs classified in this study as ‘excluded resort localities’, approximately four-fifths (321) of these localities corresponded to the 25 most deprived resorts. None of these resorts had LSOAs in all of the four clusters. But nine resorts have LSOAs in three of the four clusters. These resorts, which might therefore be seen as
experiencing more serious and complex multiple deprivation problems, are (according to their level of deprivation):

1. Blackpool
2. Hastings
3. Folkestone
4. Scarborough
5. Clacton-on-Sea
6. Brighton
7. Lowestoft
8. Torquay
9. Southend-on-Sea

The majority of the nine resorts are located along the east coast of England (4), followed by three in the Southeast and one in the Southwest and Northwest. With a population of above 40,000, all the resorts qualified as ‘large’ resorts in this study and, with the exception of Brighton, exhibited the following complex localised problems:

- Unemployed households with low incomes and social disadvantages;
- Social housing neighbourhoods with young population in unstable families; and,
- Older population, lower unemployment but higher health-related problems.

The latter two area types – together with ‘areas in flux with ethnic minorities, solo living and private renters in poor housing’ – affected Brighton.

However, the majority of the 25 most deprived resorts were identified as experiencing two problem complexes. A total of thirteen resorts fell into this classification, with seven resorts containing localities characterised by ‘social housing neighbourhoods with young population in unstable families’ and ‘unemployed households with low incomes and social disadvantages’. These resorts are (according to their level of deprivation):

1. Heysham
2. Margate
3. Great Yarmouth
4. South Shields
5. Ramsgate
6. Morecambe
7. Falmouth
Spatially, the seven resorts are scattered around England and, with the exception of Heysham, Morecambe and Falmouth, are ‘large’ in terms of population size. Regarding the other six resorts, they were characterised by a combination of ‘social housing neighbourhoods with young population in unstable families’ and ‘older population, lower unemployment but higher health-related problems’. These resorts are (according to their level of deprivation):

1. Skegness
2. Dover
3. Ilfracombe
4. Weston-Super-Mare
5. Weymouth
6. Whitby

However, when compared to the previous list, the resorts are nationally less widespread, with three occurring in Southwest, two in the East and one in the Southeast. Furthermore, with the exception of Weston-Super-Mare and Weymouth, most of these resorts are medium-sized towns. That leaves three seaside resorts that were identified as experiencing a singular problem complex. These resorts – Fleetwood, Penzance and Littlehampton – are all medium-sized towns and had deprived areas characterised by ‘social housing neighbourhoods with young population in unstable families’.

Overall, there is no clear pattern emerging as to the geographical distribution of multiple deprivation problems. There are deprived seaside resorts in all regions experiencing different combinations of two or more problem complexes, albeit to a greater or lesser extent. What is clear, however, is that the larger seaside resorts are suffering from a wider range of problems. Given the policy and academic focus on concentrated deprivation in urban areas and its presumed pernicious effects, it is also useful to have some understanding of exactly how concentrated excluded localities are and where exactly such areas are in the worst hit resorts. Appendix Figures B1–25 provide maps of the clusters for each of the 25 most deprived resorts. During the final production of the maps using ArcMap, detailed layers of locational information, including the boundaries for resort LSOAs, were suppressed for greater
clarity. (However, more detailed resort maps of the clusters cross referenced against the boundaries for Census wards and LSOAs for instance can be obtained from the author.)

Inspection of the maps revealed that, in the majority of resorts, similar excluded localities are spatially clustered and that different excluded localities are, if not neighbouring each other, in close proximity. In relation to the nine large sized resorts that were identified as experiencing three problem complexes, a common pattern, as exemplified by Blackpool (Figure 6.6), includes the localities of cluster 1 (i.e., ‘unemployed households with low incomes and social disadvantages’) and cluster 3 (i.e., ‘older population, lower unemployment but higher health-related problems’) being mainly located along and behind the central seafront. This pattern is not surprising given that some of the former commercial holiday accommodation has been turned into care homes, hostels, HMOs and small flats. In the middle and outer suburbs of the same resorts, the built environment is more secure and the population appears relatively problem-free, as indicated on the maps by the grey space representing unclassified resort LSOAs. However, the local authority estates in the middle and outer suburban localities provided the principal loci for the ‘young working-class households and unstable families’ of cluster 2, which is the largest cluster of excluded seaside resort localities in this study. The smallest cluster, representing ‘areas in flux with ethnic minorities, solo living and private renters in poor housing’ (cluster 4), related to six resorts overall, but only one of these resorts (Brighton) exhibited higher levels of multiple deprivation than might be expected. Nonetheless, as exemplified by Brighton (Figure 6.7), localities in this group spatially tended to be located mainly in near-seafront areas, reflecting the prevalence of cheap rental accommodation. There are, however, examples of these types of localities in some outer areas of the resorts of Brighton, Bournemouth and Eastbourne, owing to the prevalence of low cost student accommodation in these resorts.
Figure 6.6: Area deprivation in Blackpool, Northwest England
(46 clustered LSOAs / 94 resort LSOAs, 49%)

Source: Author’s own work
Figure 6.7: Area deprivation in Brighton, Southeast England
(29 clustered LSOAs / 101 resort LSOAs, 29%)

Source: Author’s own work
6.3 Summary

The research was set out to ascertain the influence of resort socio-economic performance on social exclusion and, by employing a comparative analysis of socio-economic performance in deprived and less deprived seaside resorts, has revealed some substantial differences between the two groups. In relation to population composition, the deprived resorts are significantly different from less deprived resorts in terms of high levels of worklessness/benefit dependency, disadvantaged occupational characteristics, low levels of skills and education, poor health, family breakdown, poverty and lack of access to material resources. With regards to indicators of decline, the deprived resorts are differentiated by low rates of employment and high proportion of part-time jobs, low levels of household income, high rates of crime, low house prices and a high proportion of vacant dwellings. However, it is also the case that, on many of these measures, the deprived resorts as a group differ to a great degree from England overall, indicating the polarising trends which have characterised English seaside resorts and which have been widely discussed in the literature. The scale of population composition disparities are generally small when compared to the area condition disparities. Nonetheless, while the evidence is not wholly conclusive and it is based on, admittedly, a comparative and simple statistical analysis of mean values for selected variables in deprived and less deprived resorts, it is pointing towards the conclusion that there are compositional effects reinforcing the problems of these urban areas.

The research has also sought to identify, classify and map excluded localities in England’s seaside resorts. Four distinct deprived area types are identified that represent different aspects of the socio-spatial structure of resorts. It appears that social exclusion is extensive in these environments as not only are deprived areas geographically concentrated in the near-seafront region, but also located in the middle and outer suburban regions of the resorts. The analysis has confirmed the inaccuracy of the widely-held assumption that urban disadvantage in England is exclusively associated with the location of social housing. At the suburb-scale, such housing is only a major presence in one of the four
distinct ‘excluded resort locality’ typology categories emerging from the analysis. However, the ‘social housing neighbourhoods with young population in unstable families’ is by far the largest cluster of excluded resort localities and, moreover, the problems associated with these estates have rarely been mentioned in the academic and policy literature on seaside resorts. It also suggests that socio-spatial disadvantage is a somewhat more complex and multi-faceted phenomenon in seaside resorts than in other urban areas of England.
Chapter 7

Discussion and Conclusion

Academic study of social exclusion in post-mature mass tourism resorts is conspicuously absent and, as a result, little is known about its occurrence, nature and extent, its cause or causes, or whether and to what extent it inhibits resort restructuring. The present research aimed to develop understanding of social exclusion in a post mature resort context and has identified the anatomy, level and extent of multiple deprivation in English seaside resorts, the factors significant for their deprivation and the nature and incidence of localised problem complexes. Not only are the research findings of paramount importance in understanding both the character of social exclusion and the prospects for socio-economic regeneration, but they also contribute to understanding of the outcomes of post-mature resort development, particularly in relation to the internal dynamics of resort change. Thus, the results presented in this thesis are of both academic and policy relevance. In an attempt to demonstrate the relevance and significance of the research, this chapter is divided into four main sections. The first section will provide a synthesis of the empirical findings from the study with respect to the research objectives, and relate the findings to previous research. Attention turns in the second section to the contribution of these findings. In the third section, the limitations of the study are highlighted. Finally, consideration is given to areas for further research.

7.1 Empirical findings

The study was set out to investigate the influence of resort decline on social exclusion in English seaside resorts and has had the following research objectives:

(i) To identify the nature and extent of social exclusion in seaside resorts;
(ii) To describe differences in socio-economic structure between deprived and non-deprived resorts and the factors that may explain these differences; and,
(iii) To identify, classify and map deprived areas in seaside resorts.

These objectives have been met as follows:
7.1.1 Nature, level and extent of social exclusion in seaside resorts

The study constructed a national seaside resort database, drawing, in the first instance, on the Indices of Deprivation, with the latter comprising a number of key deprivation-related measures for local authority districts and lower layer super output areas (LSOAs). In order to identify the nature, level and extent of social exclusion in English seaside resorts, the study applied the seaside and non-seaside area classification to all local authority districts in England, defined the 58 largest English ‘seaside’ resorts in terms of resident population, and conducted analysis on them using the overall Index of Multiple Deprivation and the individual deprivation domains published for LSOAs in 2004, 2007 and 2010. Analysis of multiple deprivation in the following types of local authorities – inland, coastal, seaside with resort, seaside without resort – revealed that ‘coastal’ and ‘seaside with resort’ districts are experiencing higher levels of multiple deprivation than might be expected. Further analysis showed that not only are ‘seaside with resort’ districts associated with higher levels of multiple deprivation, but also within them, those LSOAs that constitute the seaside resorts are where it is concentrated. Indeed, there are relatively few deprived LSOAs outside of the resorts. Seaside resort areas that score highly on the overall Index of Multiple Deprivation also tend to score highly on all aspects of deprivation simultaneously (with the exception of access to housing and services). Most aspects of life are affected, including educational attainment and skills, crime and safety, the environment, health, and incomes; benefit dependency is very high, employment is low. The results are unequivocal; the majority of seaside resort LSOAs are experiencing similar types and high levels of multiple deprivation. Due to the linked nature of the problems being experienced, it is clear that residents living in seaside resorts are at risk of, or suffering from, social exclusion.

These findings are consistent with those of Agarwal and Brunt (2006) who also reported that the incidence and level of multiple deprivation differs across types of local authorities. The degree, extent and local concentration of multiple deprivation was found to be significantly lower in ‘inland’ districts than in ‘coastal’ and ‘seaside’ districts. Even though
Agarwal and Brunt (2006) used a district classification similar in principle to this study, they only differentiated between ‘coastal’ and ‘seaside’ districts, thus failing to recognise ‘seaside with resort’ and ‘seaside without resort’ districts. Furthermore, the lowest level of information available was for census wards and the absence of environmental and crime indicators within the Index of Multiple Deprivation 2000 meant that Agarwal and Brunt (2006) were unable to draw out more detailed conclusions regarding the manifestations of social exclusion within English seaside resorts. The present study, therefore, provides an important update and methodological improvement.

In addition though, the study has used a number of analytical techniques and approaches to answer several other vital questions within the discourse. It sought to know whether seaside resorts were more susceptible to multiple deprivation than the rest of England, whether there were differences in the level and nature of multiple deprivation between large and medium size resorts and whether the levels of deprivation were similar between the resorts. In doing so, the changes in levels of deprivation were explored with reference to the 2004 and 2010 versions of the Indices of Deprivation. Although a relatively short time frame, it offers an important insight into where positive and negative change is occurring and what trajectories of change might be. The present study, therefore, provides additional evidence in relation to the evolving economic and social fortunes of seaside resorts. Three key research insights emerged.

First, England’s principal seaside resorts are rather more deprived than the rest of the country. The research followed the methodology used by the DCLG when calculating the ranks for local authorities to calculate the average LSOA rank (population-weighted) for each of the seaside resorts. On the overall Index of Multiple Deprivation, the vast majority of seaside resorts display an overall level of deprivation greater than the English average. With the exception of crime and access to housing and services, a similar pattern is evident for the five other domains (income; employment; education, skills and training; health and disability;
Thus, the most striking result to emerge from the data is that the vast majority of seaside resorts in England rank poorly on all aspects of ‘economic’ deprivation (income; employment; education, skills and training). This consistency may be due to a number of factors, including the physical isolation of many English seaside resorts (which can act as a barrier to economic growth), low diversity in the economy and the large number of low-skill, low wage jobs concentrated in the service sector of the economy. These sectors often also require temporary, part-time, and seasonal workers. The shortcomings in the job markets have four main effects. One consequence of the character of employment is that local people struggle to create wealth and escape from the low wages cycles. Second, the seasonal nature of much of the employment on offer in the seaside tourist sector means that workers are less likely to progress in terms of qualifications or career advancement, as each period of employment may be with a different employer. Third, instability of income and insecure employment reinforce low expectations and aspirations, and provide few incentives for people to engage with formal employment and move off of state benefits. A fourth consequence is the out-migration of large numbers of able and ambitious young people to pursue education and employment opportunities elsewhere. In doing so, they leave behind a poorly qualified working-age population to support an increasing population of elderly residents. Not surprisingly, then, resorts that rank poorly on the ‘economic’ domains also rank poorly on the overall Index of Multiple deprivation. In contrast, the patterns for the ‘social’ domains – health, barriers to housing and services, living environment, and crime – differ, albeit slightly, with some resorts that rank poorly on the Index of Multiple Deprivation relatively well ranked for these domains. In considering this variation in domain rankings, it is worth reiterating that these particular rankings are for the seaside resorts and how they relate to one another and are not representative of how a seaside resort relates to England. Nonetheless, the importance of the nature of the seaside/resort itself as a cause of social exclusion is becoming clear.

Second, there is a relationship between the size of the resort and the incidence and level of multiple deprivation. The relative importance of size has been subject to debate.
Initial discussions of the extent to which size affects performance emerged during the 1990s, owing to a report produced by the former English Tourist Board (1991) on ‘The Future for England’s small and medium sized seaside resorts’ which surmised that these environments were experiencing the most severest socio-economic problems. The differing character, problems and prospects for small, medium and large size seaside resorts are also emphasised in Shaw and Williams’ (1997b) conclusion that many of the smaller and medium size resorts face serious difficulties regarding their tourism product. More recently though, the British Resorts and Destination Association giving evidence to the Select Committee on Coastal Towns (CLG, 2007a) sided with Beatty and Fothergill (2004: 475), claiming ‘size seems not to be a key factor’. However, the Beatty and Fothergill (2004) study has been criticised on a number of grounds (see Sections 1.2, 3.2 and 3.3). What is relevant here is that, as Shaw and Coles (2007: 50) have pointed out, ‘smaller resorts were omitted from Beatty and Fothergill’s study and therefore the overall influence of resort size would not be fully measured’. Another relevant issue is that Beatty and Fothergill (2004) conflate a number of seaside resorts within larger administrative and data collection units, thus bypassing individual seaside resorts within some local authority districts. The latter practice also occurred in the benchmarking study of England’s larger seaside resorts (Beatty et al., 2008), which was followed by a benchmarking study of smaller seaside resorts (Beatty et al., 2011).

In commenting on these benchmarking studies, Beatty et al. (2011: 105) concluded that ‘smaller seaside towns appear to be marginally less disadvantaged than their larger counterparts’, noting that ‘on the Index of Multiple Deprivation 2007, and on all the indices for individual domains, the proportion of smaller seaside towns with deprivation above the England average is less than the equivalent proportion of larger seaside towns’. Such expositions are unsatisfactory because information based on local authority boundaries creates difficulties and no statistical measures of association were used. Questions may also be raised about the study by Agrawal and Brunt (2006: 662), who identified 87 seaside resorts and reported ‘there appears to be no relationship between the size of the resort and the incidence
and level of multiple deprivation; both smaller and large sized resorts appear to suffer from high levels of multiple deprivation’. Agarwal and Brunt (2006) failed to provide evidence of this analysis, not even specifying how the resorts were split in the analysis. Thus, the generalisability of published research on this issue is problematic. There is a lack of transparency and previous research findings have been inconsistent and contradictory and, for the most part, based on speculation or simple statistical analysis.

While the evidence is not wholly conclusive (this study excludes the very smallest seaside settlements with a population of less than 10,000) and it is based on, admittedly, a sample of 58 seaside resorts, it is pointing towards the conclusion that there is an association between the size of the resort and the degree of multiple deprivation. On the overall Index of Deprivation, and in each of its constituent domains, mid-sized resorts record significantly lower levels of deprivation than larger resorts and a wider range of deprivation levels. Further analysis, however, of the correspondence of overall deprivation with each of the deprivation domains, revealed strong associations, although the relationship between overall deprivation and barriers to housing and services is confined to large resorts. Thus, with the exception of access, there are no significant differences in the patterns of deprivation between large and medium size resorts. Overall these findings demonstrate that English seaside resorts, albeit of medium or large size, are experiencing similar problems of multiple deprivation, but large resorts tend to have higher levels. The latter finding is surprising given that large urban resorts might be expected to attract more employment opportunities, even in times of economic strife.

A third insight is that the commonly experienced problems are deeply embedded. The patterns of deprivation faced by seaside resorts in 2010 were similar to those in 2004, but there were changes in levels of deprivation. Analysis of quartile composition change revealed that the majority of the resort LSOAs experienced a modest change in their national rank but a small number did experience significant change. For all domains, except income, several
resort LSOAs improved or worsened by two quartiles and, in some instances, by three quartiles. Even though the indices of deprivation are about relative deprivation not absolute changes, such changes in deprivation levels of resort LSOAs cannot be due to the improvement or worsening of deprivation rankings of other small areas elsewhere in England alone. Indeed, the erratic changes in deprivation levels, both positive and negative, suggests that resort-level influences in general and population composition and dynamics in particular are instrumental in shaping the fortunes of many resort LSOAs. That said it should be emphasised that the majority of resort LSOAs experienced a modest change in their national rank. This pattern holds true when the most deprived quartiles are considered separately. Overall these results match those observed in previous longitudinal studies of urban deprivation (e.g., Brennan et al., 1998, 2000; Burchardt et al., 1999; Lupton, 2001; Orford, 2004), which showed that there is typically little significant change through time in the characteristics and performance of the most deprived areas.

Consequently, at an aggregate level, the changes in levels of deprivation were not particularly dramatic. Overall LSOA movement from 2004 was negative for five out of the seven deprivation domains (education and skills, health, housing and services, living environment, and crime). In terms of the employment and income indicators of multiple deprivation, from 2004 to 2010, the English seaside has reduced its percentage of LSOAs that are considered to be in the most deprived national quartiles, but the improvements were very small. Indeed, the domains which had the highest proportion of resort LSOAs in the most deprived quartiles in both 2004 and 2010 were the ‘economic’ domains (employment, income, and education and skills), the ‘health deprivation and disability’ domain and ‘living environment deprivation’. That leaves the ‘crime’ and ‘barriers to housing and services’ domains, which had the highest proportion of LSOAs in the least deprived quartiles in both 2004 and 2010. These domains became more evenly distributed when comparing 2004 with 2010, with the percentage of LSOAs falling within the upper quartiles increasing in size. Taken together, these findings highlight the increasing economic, social and environmental
pressures that contribute to, and are indicators of a continued process of decline. The cumulative effects of these key socio-economic indicators are shown in the levels of multiple deprivation. In relation to national quartiles, quintiles and deciles, the latest evidence reveals that there is a skew in resort LSOAs towards the very deprived. This skew is slightly more pronounced than in 2004. Since then, there has been a slight contraction in the proportion of LSOAs classed nationally as less deprived and a slight expansion in the proportion classed nationally as more deprived. Thus, multiple deprivation at the English seaside has increased both in extent (number of LSOAs) and concentration (severity).

In summary, the initial part of the study provided a descriptive analysis of the nature, intensity and scale of social exclusion in English seaside resorts. Research was undertaken because ‘seaside resorts are the least understood of Britain’s “problem” areas’ (CLG, 2007a: 42) and the existing evidence base is patchy. Indeed, as earlier chapters highlighted, seaside resorts have until now received very little attention either from policy-makers or the academic community, particularly in comparison with inland urban and rural areas and declining industrial areas. The research found English seaside resorts generally had greater levels of deprivation than the rest of England. Higher deprivation levels than might be expected by the size of the resort were also found. Larger seaside resorts generally had higher levels of deprivation than the mid-sized resorts. As with the larger seaside resorts, there was variation in the levels of deprivation in the mid-sized seaside resorts. The most deprived resorts and areas have multiple problems, including low income and employment, poor skills, education and training, bad health, deprivation in the living environment, and high crime and disorder. Many of these commonly experienced problems are deeply embedded. They have persisted and intensified over the last decade. Thus, there is deprivation and social exclusion in English seaside resorts; individuals and households exist with a poorer standard of living in comparison to the majority of the population and with an inability to participate in everyday activities that most take for granted, and substantially more than is widely recognised.
As well as highlighting the occurrence, nature and extent of characteristics associated with social exclusion, the initial part of the study has:

- Charted the quintile distribution of LSOAs for each seaside resort to show the overall pattern of deprivation;
- Established a detailed understanding of their current position, as a baseline for monitoring future change;
- Established a national seaside resort database to monitor change and mechanisms for collating and analysing the Indices of Deprivation data;
- Identified deprived resorts and localities for more detailed study, using the upper quintile threshold as recommended by DCLG (McLennan et al., 2011); and,
- Begun to understand and explain the contribution that tourism makes to the circumstances of seaside resort residents.

7.1.2 Differences in socio-economic structure between deprived and non-deprived resorts and the factors that may explain these differences

In seeking to understand the influence of resort decline on social exclusion, a statistical analysis was used to ascertain whether there were differences in socio-economic performance between deprived and non-deprived resorts identified in stage one, and if so, the scale and the extent of the differences. This objective was achieved by drawing on the newly created seaside resort database consisting also of a range of social, economic and demographic measures derived from multiple sources including the 2001 Census of Population, Labour Force Survey, Annual Business Inquiry, Department for Work and Pensions, HM Revenue and Customs, Experian, Land Registry, Home Office, Housing Strategy Statistical Appendix and ONS. The results reveal that a range of facets of population composition (worklessness, education and skills, health, family stability, connectivity, and poverty) and place factors (employment base, economic prosperity, housing, and community safety) are significant for deprivation in seaside resorts. The second element of the research therefore provides a better understanding of some of the causes and consequences of social exclusion within English seaside resorts. However, in considering the influence of resort decline on social exclusion, a fundamental issue is the identification of similarities in the
economic characteristics of deprived resorts which significantly differentiate them from non-deprived resorts, and which consequently shape their development paths.

In comparison to the economic structure of more prosperous resorts, a general feature of deprived resorts is the relative weakness of the private sector in terms of employment (and by extension, investment and service provision). This finding is exemplified by the prevalence of public sector employment in deprived resorts, which is significant. However, although the public sector is particularly important as a source of semi-skilled service employment, a reliance on the public sector ‘is not necessarily advantageous to productivity as it focuses on non-traded goods, thereby limiting the supply chain’ (Agarwal et al., 2009: 317). In addition, the lack of dynamism of the private sector also negatively impacts upon the public sector, ‘as patterns of public sector investment are themselves strongly influenced by those of the private sector’ (North and Syrett, 2008: 82). Whilst employment in the sectors most dependent on the tourist trade was not identified as being significant for deprivation, which serves to demonstrate that tourism is still a key industry in seaside resorts, the deprived resorts are distinguished economically in terms of their labour market characteristics. Significantly, deprived resorts are characterised by high levels of unemployment (and youth; long-term unemployment) and worklessness, low rates of employment, high levels of part-time employment, many low-wage manual jobs, low levels of skills and education, and of household income. Furthermore, levels of formal entrepreneurship and small business formation are significantly lower, as measured by the proportion of population that are self-employed, employers in small organisations and own account workers.

Some of these disadvantaged labour market characteristics (unemployment, low income) have been documented in the academic and policy literature (English Tourist Board, 1991; Cooper, 1997; British Resorts Association, 2000; Beatty and Fothergill, 2004). Moreover, such economic problems may be interpreted as ‘consequences of decline’ (Agarwal and Brunt, 2006: 667) and are highlighted by DCLG-funded qualitative research of
ten ‘deprived’ resorts, which were identified on the basis of the local employment rate (Shared Intelligence, 2008). Thus, the present research confirms previous findings and contributes additional evidence that suggests the long-term structural decline of tourism has produced many resort economies with a number of common weaknesses in terms of low levels of productivity, economic activity, income, wages, skills and education.

A degraded physical environment also reflects a lack of ongoing investment from both private and public sector sources, over long periods of time (Shaw and Coles, 2007). This point is borne out by the record on two of the major sources of government regeneration funding, Single Regeneration Budget (SRB) and Neighbourhood Regeneration Fund (NRF) funding. These funding programmes were central to the New Labour social exclusion agenda, but seaside resorts were not recognised as a regeneration problem requiring specific action. However, owing to the publication of the DCLG Select Committee Inquiry on Coastal Towns in 2007, there is now a growing awareness that the decline in tourism has had serious consequences for the physical state of resorts. The situation is neatly summarised by Seeda (2005: 16):

‘The decline in tourism income for B&Bs has led to a cycle of decline with the first closure of a B&B in a street being swiftly followed by the closure of other neighbouring establishments. These premises then either remain vacant or are converted into unlicensed ‘Housing of Multiple Occupation’ providing low-quality rentals. The properties are poorly maintained and whole streets and neighbourhoods begin to take on the characteristics of slums, affecting property values and making the resorts less attractive to visitors’.

Thus, contrary to earlier documents which highlight unemployment and low income as decline indicators (English Tourist Board, 1991), a broader range of problems including poor environmental quality, housing and increased crime are now recognised (British Resorts Association, 2000; English Heritage, 2003, 2007; British Urban Regeneration Association, 2007; Coastal Communities Alliance, 2010). Accordingly, the influence of resort decline on social exclusion was further examined through measures of physical distress.
The research found significant differences between the deprived and non-deprived resorts for measures such as housing tenure and condition, vacant dwellings, crime, and residential property prices. House values can be seen as picking up on the condition of the built environment, where high prices equal better quality and decent transport links, schools, greenspace, community safety etc. Non-deprived resorts have higher than average values of property than seaside resorts as a whole, whilst deprived resorts exhibited lower than average values. A similar pattern is evident for owner-occupied housing. This finding may be explained by the fact that, in the non-deprived resorts, the number of retired persons is significantly higher and the net in-migration is especially strong among those aged 45 and over. Although the inflow of older people creates and perpetuates a relatively old age distribution, this in-migration is important as many are drawn from more affluent groups (Shaw and Williams, 2003) and can ‘fuel economic development (most are not looking to give up work and may be keen to take local jobs or commute elsewhere, at least initially), employment growth in consumer and public services such as health (which is driven by population-driven formulae), and generate extra spending’ (Atterton, 2006: 29). Indeed, as Shaw and Williams (2003) have pointed out, members of affluent groups have relocated to resort towns for environmental and lifestyle reasons and not just simply to retire. Many become self-employed, establish a tourism business or pursue investment opportunities. It therefore appears that the deprived resorts generally provide few attractions to the entrepreneurial class, property developers and to business investment, owing to low levels of market demand and competition, and the adverse quality of the environment.

Significantly, the housing market in deprived resorts has higher proportions of social housing and private rented properties than more prosperous resorts. Moreover, unlike the rest of England, there is a higher proportion of private dwellings. The unbalanced housing stock is due to the remnants of former tourism accommodation being converted into small-flats, bedsits and other Housing of Multiple Occupation. This finding perhaps may best be exemplified by the prevalence of housing lacking/sharing basic facilities and of
overcrowding, rates of which are significantly higher in the deprived resorts. Such low quality housing provides a useful source of income for proprietors facing declining revenues from tourism, but Beatty et al. (2004) reveal it has attracted young, low skilled individuals and households often reliant on state benefits. What this particular housing study also noted is that many then move on to accommodation in the social housing sector (council or housing association) in the same seaside resort. Social housing is allocated according to need. The criteria is different for every local authority but can include homelessness, overcrowding, medical or welfare issues, financial circumstances and number of dependents (Hills, 2007). Thus, in many cases these residents have complex and multiple needs that place significant financial and managerial pressures on a range of public services.

Significantly, deprived resorts are differentiated in terms of higher proportions of young age-groups, as well as working-age residents. Furthermore, the net in-migration is greatest among the under-45s, although not markedly so. The cumulative effect over several years could help explain deprivation levels in these resorts. If, as Beatty et al. (2004) have pointed out, the latter group is largely characterised by disadvantaged socio-economic characteristics, the steady inflow over time may partly account for the inertia (documented in the previous section). Another explanation for inertia might be reduced expectations and aspirations resulting from no or little experience of employment extending across generations. The latter point perhaps may best be exemplified by the incidence of children in out-of-out work families and of children in lone parent families, rates of both in the deprived resorts are significantly higher than in non-deprived resorts.

The importance of housing market change as a factor for deprivation in seaside resorts is well summarised by Shared Intelligence (2008: 10) drawing upon the results of interviews with housing managers in ten deprived resorts:

‘the prevalence of cheap rental accommodation has served to attract in vulnerable individuals. The poor quality of the stock and the out-migration of younger households further creates a cycle of low demand and low prices. The low demand for “typical”
family accommodation depresses prices and acts as an incentive to meet the demand for low-quality, low rent flats and bedsits, which in turn encourages more affluent families to look elsewhere’.

Put differently, with lower-income residents moving into an area, demand for higher rental properties decreases which makes it less profitable to invest in maintenance and improvements. Such a process can create a downward spiral, resulting in further degradation of the built environment (in terms of quality of buildings, litter, graffiti, vandalism etc.) and encouraging higher levels of crime, thus making such areas less attractive to existing and potential residents. The latter point is supported by evidence that levels of empty housing, which is an indicator of low demand and the decline of particular neighbourhoods, are significantly higher in the deprived resorts. A similar pattern is evident with respect to crime rates, which are not only an indicator of community safety but also reflect economic circumstances. Furthermore, the research found a very high turnover of population in the deprived resorts, which corroborates the observations of those housing managers, and which has important implications for public policy on regeneration.

Overall, the results do confirm expectations from the extant literature reviewed in Chapter Three (section 3.3.1). For the first time quantitative research demonstrated that indicators associated with negative labour-market outcomes, together with disadvantaged environmental and housing market characteristics are distinguishing features of deprived seaside resorts in England. In this respect, the research built on the qualitative work of Shared Intelligence (2008), which interviewed regeneration and housing managers in ten employment deprived resorts and commented that evidence on all of these characteristics is fairly scant, and that more detailed quantitative analysis is needed. Although it is possible to identify certain common economic and physical characteristics of deprived resorts, two points need to be recognised. First, the analysis identifies differences in conditions between deprived and non-deprived resorts. The basis of comparison is with the seaside average in the measures used, but the scale of the differences are not always large. Nonetheless, they are statistically significant. Second, it is also the case that, on many of these measures, the 58 seaside resorts
as a group differ to a great degree from the figures for England overall. So, there are areas of convergence that in many cases result from the seaside resort characteristics of these urban areas. By undertaking a comparative analysis of the national averages of a range of socio-economic indicators (nearly 70) for England and for the 58 seaside resorts, the research also helped to fill the evidence gap that existed on seaside resorts. It built on the work of Beatty et al. (2008), their benchmarking study of the 37 largest seaside resorts used short of 30 measures of seaside socio-economic performance, but they also group several seaside resorts and do so using district-level data.

The outcome of the analysis prompts two broad conclusions. The first point concerns the main explanatory factors for seaside deprivation and the characteristics of deprived resorts. The second point relates to the potential of ‘area based’ effects in reinforcing the problems of these resorts. Both points are discussed in turn. To begin, no-one seriously doubts that ‘English seaside resort decline has been endemic since the late 1970s’ (Agarwal, 2005: 353) and that it generally takes many years for areas and their populations to become deprived or ‘detached from the conventional labour market’ (McGregor and McConnachie, 1995: 32). However, although a central feature of resort decline is the production and persistence of disadvantaged labour market characteristics as this study demonstrates, it appears that the subsequent evolution of seaside resorts has been driven by processes of residential sorting associated with the allocation of social housing, but particularly the availability of low cost rented property. Before proceeding to summarise the importance of the private housing market as a factor for seaside deprivation, however, it is necessary to touch on social housing policy, which is often the primary factor in the emergence of concentrations of deprivation in Britain (North and Syrett, 2008).

Indeed, such policy has brought about residential sorting. Throughout the 1930s and 1970s, government sought to address urban overcrowding by uprooting inner-city communities and relocating them to especially constructed ‘mono-functional estates built as
dormitories for the families of mainly male workers’ (Power and Mumford, 1999: 81). The effect of this policy was the destruction of established social networks and the concentration of similar socio-economic characteristics to new, social housing estates which were often on the periphery of towns and cities in Britain. Later, in the 1980s, government introduced the Right-to-Buy scheme which led to growth in private ownership but, at the same time, a distinction being made between the purchasing of the better social housing stock (whether on account of its quality of build or its location) and the non-purchase of the least desirable housing stock (Power and Mumford, 1999). More recently, the criteria employed by local authorities to allocate social housing has served to exacerbate the trends above by placing vulnerable individuals and families into such stock, ‘much of which is in low demand areas with concentrations of worklessness’ (Hills, 2007: 18).

Paralleling these housing policy impacts has been the residential sorting effects that the private housing market has had. The situation is neatly summarised by Sutherland et al. (2010: 6):

‘[First] The societal preference for private, owner-occupied housing has led to low demand for properties in areas of high social housing. [Second] New private sector housing has become increasingly accessible and affordable enabling most income groups to have greater choice in where they wish to live and can afford to buy. Consequently, individuals with the lowest incomes have the least housing choice and are ‘forced’ to live in areas of least demand’.

It follows that urban disadvantage in Britain is invariably associated with the location of social housing. Indeed, in his foreword to the Social Exclusion Unit’s report on deprived areas, Tony Blair suggested that: ‘We all know the problems of our poorest social housing neighbourhoods - decaying housing, unemployment, street crime and drugs. People who can, move out. Nightmare neighbours move in. Shops, banks and other vital services close’ (SEU, 1998c: 7). Excepting Beatty et al. (2004), no mention has been made to the incidence of social housing in English seaside resorts, as attention has focused on the ‘new’ housing that was formerly tourist accommodation.
Thus, such housing has become available in both the deprived and non-deprived resorts due to the decline in tourism. However, the prevalence of the public sector as a source of employment in the deprived resorts suggests that these resorts have experienced relatively significant decline in recent decades (compared to the more prosperous resorts), resulting in a more unbalanced housing market and impacting more on existing residents and changing population composition. The present research did not set out to cover population transience and migration in any depth as the ward-level data was limited to age, thus making it impossible to draw out more detailed conclusions regarding the nature of migrancy (e.g., short term vs. long term) and what skills, qualifications and expertise migrants are bringing to seaside resorts. But the research produced overall findings that are consistent with previous empirical work (Beatty et al., 2003, 2004; Atterton, 2006) and discussions (Shaw and Coles, 2007) and furthermore demonstrated that, in the deprived resorts, the net in-migration is greatest among the under-45s, whereas in the non-deprived resorts, net in-migration is especially strong among those aged 45 and over. If, as the previous writers argue, the former group is less affluent (i.e., young, low-income, low-skilled), then this pattern of in-migration is clearly a factor for seaside deprivation, not least if members of the group remain in the resort long-term and move from private rented accommodation to the social sector (with the private rented housing then being repopulated again with more vulnerable individuals and households). In the case of the more prosperous resorts, then, it might be that the decline of traditional seaside holidaymaking has sometimes been counterbalanced with the in-migration of affluent groups, resulting in investment flowing into business and residential developments and, perhaps, resulting in slightly more diversified economies.

Of course the relative importance of both migration and housing market change will vary from resort to resort, but doubtless the long-term structural decline of traditional seaside holidaymaking has led to economic deprivation in seaside resorts, with the continuing reliance on tourism and the shortcomings in the job market accounting for the stubborn levels of deprivation documented in the previous section. Arguably, while resort decline, housing
market change and migration are the underlying causes of seaside deprivation, they have largely had their direct impact. The persistence of deprivation might (in addition to the shortcomings in the job market) also be due to processes that are operating relating to people and place, which have been collectively termed as ‘area based’ effects in the social exclusion literature (e.g., Atkinson and Kintrea, 2001; Buck, 2001; Social Exclusion Unit, 2004). So what are ‘area based’ effects, how can they be identified and what area effects might be operating in seaside resorts?

The literature on area based effects is more developed in the US than in UK, and its findings and theoretical propositions have been reviewed elsewhere (e.g., Buck, 2001; Atkinson and Kintrea, 2002; North and Syrett, 2008). In brief, area effects refer to the notion that deprivation can have a compounding effect upon residents of deprived areas, above and beyond those experienced at an individual level. Studies from the US (see Jargowsky, 1996) have shown that the size of area effects in deprived towns and cities are generally small when compared to national macroeconomic conditions, structural factors at the regional level (such as skills, innovation, competition, enterprise, investment) and non-spatial explanatory variables (such as age, gender, ethnicity, social class). However, they are statistically significant. Area effects therefore shed some light on the question of why after years of tackling deprivation and social exclusion mainly through individually targeted responses (see section 2.3) there is, as the previous section highlighted, little significant change through time in the characteristics and performance of the most deprived areas in Britain.

A wide range of potential area effects can be identified with respect to deprived areas (Atkinson and Kintrea, 2001; Buck, 2001; North and Syrett, 2008). As already indicated, there are effects that flow from the characteristics of the population (the principal focus of academic debate) and those that flow from the characteristics of the place itself. Examples of population rooted area effects include socialisation processes, restricted social networks, stigmatisation of residents, high burden on local service provision etc. Some examples of
place based effects are poor-quality and/or absence of private services, lower standards of public service provision, features of the built environment, the physical isolation of the area, and high levels of environmental pollution. In an overview of the available evidence, North and Syrett (2008: 85) find the body of evidence inconclusive about area effects, noting ‘the major reason for the lack of clarity and agreement with regard to area effects is the difficulty in demonstrating them empirically given the complexity of disentangling an individual from the context in which they reside, socialise and grow up’. There are also enormous methodological difficulties for quantitative researchers in investigating area effects (see Buck, 2001 for a fuller discussion). The problems identified include: the fact that individual characteristics will influence choice and outcomes which may over/under play area effects; statistical data are of poor quality and limited relevance in measuring many area effects; effects may come into operation at particular thresholds; and, effects will operate at different levels. Furthermore, ‘the combination of interrelated factors within any given area ensures that there are multiple pathways of cause and effect’ (North and Syrett, 2008: 85). Perhaps these difficulties are why British research evidence is scant.

Studies from the US have used econometric multi-level modelling and large-scale household surveys in investigating effects of area deprivation on social exclusion measures (see Jargowsky, 1996), but the findings are ‘contradictory and inconsistent’ and ‘in some cases almost meaningless and possibly misleading’ (Lupton, 2004: 12). In asking ‘can we measure area effects and does it matter’, Lupton (2004: 4), a leading theorist of the relationship between spatial location and social exclusion, suggested that British studies need not necessarily rest on sophisticated modelling techniques, ‘as the more complex study design can “get lost” while much attention and debate is given to the weaker one’. The ‘weaker one’ refers to approaches that seek to identify whether there are differences between deprived and non-deprived areas (e.g., Atkinson and Kintrea, 2002), or to identify associations between indicators related to social exclusion in such areas (e.g., Buck, 2001). If there are, then specific area effects can be deduced. Although a ‘crude’ approach to investigating area
effects, Lupton (2004: 3) commented that ‘area-based policies are not dependent on the existence of area effects, and that most would be implemented anyway, even if no area effects were found’. Such policies are, for the most part, designed to address negative characteristics of the areas themselves.

Thus, following Lupton (2004), area effects can (to an extent) be ‘read off’ from the characteristics that differentiate deprived resorts from others. Since the primary concern of the investigation was to investigate the influence of resort decline on social exclusion, the differentiating economic and environmental characteristics previously identified are of interest here. In terms of people effects, the large group of people who are divorced from the resort economy is a concern, because the high degree of unemployed and economically inactive individuals inevitably limits the contact or relationships that residents of deprived resorts have with those in work. One ramification is that residents may be less aware of employment opportunities. It is estimated that only a third of job vacancies are notified to Jobcentre Plus (ONS, 2005), meaning that the majority of employment opportunities are filled through other formal methods and informal channels such as word of mouth, social networks etc. Consequently, people who are out of work or not in frequent contact with those in work are less likely to hear of potential opportunities. Another ramification of living in an area with high unemployment and economic inactivity is that there are fewer positive local role models (North and Syrett, 2008). As a result, some residents living in the deprived resorts may develop particular attitudes and perceptions towards education, training and employment. Specifically, a poverty of ambition and reduced expectations may affect some people and extend across generations. There might also be an acceptance of ‘getting by’ via benefits, informal work and illegal activity. Young people (due to socialisation processes) are particularly affected or at risk here, especially if they are from a lone-parent family or if parents have had long spells of unemployment/being in prison etc. (Social Exclusion Unit, 2004). A lack of participation in employment or education is also linked to ‘network poverty’
(Bailey and Livingston, 2007), whereby the quality and quantity of social capital and networks are compromised, resulting in disaffection and social isolation.

Serious place effects may arise from the poor quality of the environment and housing in deprived seaside resorts. House prices are low and it was found that, the housing stock is not well provided with basic amenities, overcrowding is high. In terms of housing lacking basic facilities, the conditions in which people live affect their health, relations between household members, and the development of children, whereas overcrowding is associated with a higher rate of child accidents and the resulting lack of privacy can be a considerable cause of mental stress (Shelter, 2005, 2006). Poor quality housing is also linked to high resident turnover, which leads to instability in school rolls, disrupting social networks and by eroding feelings of trust, safety and security contributes to local area dissatisfaction (Bailey and Livingston 2007). Studies have also found ‘a poor quality residential environment is linked to fear of crime, problems of antisocial behaviour, drugs, violence and a “generally threatening youth culture”’ (Bashir and Flint, 2010: 5). In such areas, a reduction in local private sector activity can raise prices for residents (North and Syrett, 2008). It can also create a shortage of local jobs, and low incomes and low levels of car ownership reduces accessibility to jobs (and services) in other locations, thus creating a ‘spatial mismatch’ between the local workforce and centres of employment (McGregor and McConnachie, 1995). So, in seaside resorts, living in a deprived area and living alongside disadvantaged residents may have several damaging effects on an individual’s life chances. The effects suggested above may well be small when compared to the special contribution tourism makes to the residents’ circumstances, but they are of interest because they add a new depth to understanding the internal dynamics of resort change.

7.1.3 The diversity of deprived seaside resort localities

While this study illuminates the common problems of deprived resort localities (section 7.1.1), it also illustrates the diversity of their physical characteristics, population
composition, and problems. Indeed, cluster analysis of a range of social, economic and
demographic measures for 399 resort LSOAs was undertaken to reveal the nature and
incidence of localised problem complexes. This analysis has resulted in a typology of four
clusters:

- Unemployed households with low incomes and social disadvantages;
- Social housing neighbourhoods with young population in unstable families;
- Older population, lower unemployment but higher health-related problems; and,
- Areas in flux with ethnic minorities, solo living and private renters living in poor housing.

The outcome of the analysis points to several broad conclusions. First, as already
indicated, deprived resort areas exhibit differences, and generalising across them may obscure
more than it reveals. For example, the use of the ‘20% most deprived’ indicator can be helpful
in understanding the levels of deprivation in seaside resorts and identifying the most deprived
areas, not least because DCLG and other organisations use this threshold when assessing
applications to access regeneration funds (McLennan et al., 2011). However, the Index of
Multiple Deprivation is a composite measure and the domains are standardised (with different
weights applied) and, moreover, it does not reveal anything about the local setting of
individual areas or whether they are located within larger concentrations of disadvantage;
both factors could have an important impact on any policy intervention in such areas.

Second, deprived areas in many seaside resorts are nearly all surrounded by similar
areas. That similar deprived areas tend to cluster spatially is important since arguments
relating to the negative impacts of area based effects may have greater significance in seaside
resorts. Third, although a plethora of labour market difficulties beset English seaside resorts,
such economic characteristics are much less important in terms of understanding why
concentrations of deprivation exist where they do, in comparison to housing market
characteristics. The spatial location of deprivation in England’s seaside resorts appears to
reflect the physical legacy of the tourist trade and the outcomes of recent processes of
residential sorting, as well as social housing allocation policies. Private rented housing is a
major presence in three of the four distinct deprived area typology categories emerging from the analysis. Spatially, the three clusters are found predominantly in inner-resort localities, thus implicating the differing roles of the former commercial holiday accommodation, which is increasingly being turned into care homes, hostels, HMOs and small flats. Thus, the analysis has confirmed the inaccuracy of the widely-held assumption that urban deprivation in England is confined to the location of social housing. It therefore appears that social exclusion is a somewhat more complex and multi-faceted phenomenon in seaside resorts than in other English towns and cities.

Fourth, some clusters are more deprived than others. Although the local authority housing estates in the middle and outer suburbs of the resorts emerged as the largest cluster of deprived areas, the highest levels of multiple deprivation are associated with areas grouped into cluster 1 (the second largest cluster). It displayed a range of problems, most notably unemployment (and youth; long-term unemployment), worklessness/dependency on benefits, and poverty (including child poverty). A review of the cluster profile suggests that individuals may be claiming ‘out of work’ benefits for a number of reasons including sickness and disability, looking after children (in the case of lone parents) or other caring responsibilities. Accordingly, interventions to improve connection to the labour market will be vitally important in these areas. However, although this typology of deprived resort areas can be used to develop targeted interventions aimed at addressing important local problems, one type of activity alone (e.g., skills and learning activities) will not transform the deprived areas. Given that the causes of deprivation and social exclusion are multiple, often long-term and deeply entrenched in nature, a genuine comprehensive approach is required. The approach needs to incorporate all factors promoting local area exclusion so that there is action in relation to housing, education, skills, health, employability, monetary advice, childcare, transport, crime etc.
Thus, for the first time research demonstrated that not all deprived seaside resort areas are the same (and some are more deprived than others), deprived areas in many seaside resorts are nearly all surrounded by similar areas, and seaside resorts are very obviously split in a socio-spatial sense which owes much to the decline in tourism and the impact of the private and social housing markets. By producing a bespoke typology of highly deprived resort areas, the research offers a valuable summary of the diversity of deprived resort areas, a basis for benchmarking change and evidence for policy. Comparison of the previous seaside socio-economic typology (Agarwal and Brunt, 2006) and bespoke groups for the most deprived resort areas shows some correspondences. It is important, however, to realise that Agarwal and Brunt (2006) suggest a typology based on profiling selected Census (2001) variables, so they suggest a typology of resort types and associated socio-economic characteristics (see Table 1.4). However, the typology developed in this thesis is not at the resort level, but the small area (or LSOA) level. Agarwal and Brunt (2006) suggested three resort types – ‘young’, ‘old’, and ‘wealthy’. On this basis, and looking no further than the demographic structure, the former two categories correspond to the groups identified in the cluster analysis. Clearly, the ‘old’ category relates to ‘older population, lower unemployment but higher health-related problems’. The ‘young’ category may be seen to cover both the ‘unemployed households with low incomes and social disadvantages’ of cluster 1 and the ‘social housing neighbourhoods with young population in unstable families’ of cluster 2. It is interesting to note that the present research found young people (i.e., children and working-age residents) as a strong feature of clusters 1 and 2, whereas residents of working-age are over-represented in cluster 4. Thus, social exclusion is affecting sections of the working-age population differently. Exactly how can be seen by reviewing the cluster profiles, which provide an important insight into some of the causes and consequences of social exclusion.
7.2 Key contributions

Evidently, there are three key contributions which can be drawn from this investigation. First, this study enhances understanding and conceptualisations of resort decline and the internal dynamics of change in a number of ways. Up until now these conceptualisations have been simplistic and primarily tourism centric, focusing on what Agarwal (2002: 33) terms as the ‘symptoms of decline’. Indeed, as Chapter Three demonstrated, resort change has, for the most part, been framed as a lifecycle process and ‘symptoms of decline’ refer to decline in tourist volumes and expenditure, tourism-related employment and income, resorts’ market share, environmental quality of destination, quality of visitor experience, and appeal and investment. Thus, instead of studying a resort’s changing qualities, research has studied the changing quality of tourism within a resort. Therefore, there is no clear understanding of the consequences of this decline process for the quality of resorts.

This study has attempted to develop understanding of post-mature resort development by investigating the occurrence of a range of characteristics of area condition and population composition in English seaside resorts. In doing so, the research built on the work of Agarwal (2005), whose conceptual paper highlighted the importance of place-specific factors in a study of English seaside resort restructuring. By focusing explicitly on the particularities of ‘place’ using measures of area factors and measures of population composition and dynamics, the research has advanced understanding of the character, problems and prospects for English seaside resorts. Although providing only a snapshot of seaside socio-economic performance at one point in time, this study reveals complexity and that resort decline is multi-dimensional with differing causes and consequences. The situation is complex because, on almost all indicators of socio-economic performance, the average for the seaside resorts is worse than for England as a whole, but the scale of the disparity between the seaside resort average and the English average is not always large. It can therefore be assumed that the difficulties faced
by seaside resorts are by no means unique, but what sets them apart is the complex combination of factors that exist in seaside resorts.

Indeed, as well as comparatively analysing socio-economic characteristics of seaside resorts against national averages, the research provided an indication of the chief economic and physical differences between deprived and non-deprived resorts. By demonstrating that there are differences in terms of their economic characteristics, the research has produced empirical findings that lend support to claims of differing dynamics of change, particularly with regard to the operation of spirals of decline (Shared Intelligence, 2008). Thus, the importance of area factors/condition as a cause and component of decline is clear. What is also clear is the need to further understand these interactions (by studying specific resorts in detail and over time) to identify patterns and combinations of circumstances that repeatedly occur, by quantitative research incorporating all of these factors. The present research has isolated/identified factors as being significant for deprivation in seaside resorts, but better understanding of the nature of their interactions has potentially important implications for policy development. Thus, there is a need to model more formally the factors associated with spirals of decline, in order to fully understand within-resort processes of change and their undesired consequences.

Second, this study enhances understanding of the manifestation of social exclusion in seaside resorts. The scale, nature and extent of social exclusion was investigated using the Index of Multiple Deprivation and its constituent domains – the study findings reveal that the majority of seaside resorts are experiencing similar types and high levels of multiple deprivation. Most aspects of life are affected and the problems are deeply embedded. The research built on the work of Agarwal and Brunt (2006) in a number of ways. First, the indices used included environmental and crime indicators and were available for small areas, and the changes in levels of deprivation were explored. Second, differences in socio-economic performance between deprived and non-deprived resorts were investigated,
revealing potential ‘area based’ effects in terms of people and place. Third, the research produced a typology of highly deprived resort areas, thus revealing the nature and incidence of localised problem complexes. Thus, this combination of findings enhances understanding of deprivation and social exclusion in English seaside resorts. Moreover, by highlighting the occurrence, nature and extent of characteristics associated with social exclusion, this study makes a theoretical contribution to existing theories of resort evolution. It does so by focussing explicitly on the consequences of decline instead of symptoms. By considering potential ‘area based’ effects the research has also developed understanding of the second-order effects emanating from consequences of decline, thereby enhancing understanding of the internal dynamics of post-mature resorts.

Third, this study develops and proposes a typology of highly deprived resort areas – which may be evaluated for its usefulness, and tested elsewhere. In the absence of a pre-existing theoretical framework for understanding resort socioeconomic change, the research opted for an inductive model – assembling socio-economic data (representing measures of population composition and measures of area condition) at the LSOA level and subjecting this data to principal components analysis and then cluster analysis in the expectation that this analysis would reveal distinct ‘clusters’ or areas with common combinations of values on specific variables. Thus this approach may be termed as ‘letting the data speak’. Admittedly, the results of the analysis of clusters in terms of the seven components identified in the principal components analysis are, depending on perspective, disappointing. On the one hand, although seven underlying ‘components’ summarise a great degree of the total variation in the original data, some of these components, depending on interpretation, do not amount to a clear dimension. Of course the fuzziness can be explained by the many different ways in which the data correlated during the PCA itself, and subsequent decisions on the number of components to retain and on the handling of ‘complex’ variables (i.e., variables that cross-load on numerous components). On the other hand, when analysing each cluster by original input variables, the groups and problems identified appear to have a good degree of
conceptual and geographic coherence, in terms of the clustering of deprived areas near seafront and central resort regions.

That is not to say the typology is, in any sense, a definitive classification of highly deprived resort areas. Other data, other clustering methods and different choices about the number of groups into which to place individual areas are likely to result in a different type of grouping of areas. Nonetheless, for the first time research developed a typology to be used as the basis for understanding of how types of deprived resort area are changing in different ways. The work described here, however, is the first stage in a process of research directed towards understanding area-based deprivation in English seaside resorts. Although providing an important empirical description of England’s highly deprived resort areas, there is a need to develop a typology of advantage and disadvantage across England’s seaside resorts (thus including all 1,686 resort LSOAs) in order to fully appreciate the socio-spatial structure of resorts and thereby the outcomes of post-mature resort development. The present research also suggests a degree of spatial clustering (which has serious implications in terms of area based effects), therefore, the extent to which individual resort LSOAs are located within deeply entrenched pockets of deprivation or affluence requires urgent investigation. Thus, two additional typologies will flow from this thesis: a typology of advantage and disadvantage (to fully understand the socio-spatial structure of resorts), and a spatial context typology (to fully understand exactly how concentrated deprived and non-deprived areas are, as well as gauge inequality in seaside resorts). Both typologies can be easily produced, owing to the production of the national seaside resort database. Of course, the former typology will require more thinking, possibly informed by survey research and/or peer review panel, about which indicators should be included. The survey and/or peer review additionally will help to ensure the typology’s acceptance by policymakers and the academic community, and it will generate a paper with a title akin to Cooper’s (1997) ‘parameters and indicators of decline of the British seaside resort’, with the emphasis being on seaside socio-economic performance.
7.3 Study limitations

Three important limitations need to be recognised. One is that the study employed an ecological study design and so is potentially liable to the ecological fallacy whereby associations at the area level do not necessarily mean associations at the individual level. Deprivation measures are area-based (see pages 128-9 for specific limitations of such measures) and do not correspond to individuals. Findings from this type of study cannot be related to individuals but give indications of average outcomes for individuals within small areas. However, in the absence of individual-level data, the use of the small area LSOA geography in this study is a significant improvement on previous work at census ward level (i.e., Agarwal and Brunt, 2006).

Second, it was not possible to link the Indices of Deprivation, census and administrative data with tourism statistics for English seaside resorts in order to demonstrate a stronger association between resort decline and social exclusion. The reason being the dearth of tourism data relating specifically to seaside resorts, and the non-standard way in which tourism information is collated. Tourism data are often collected on a district basis and that which is available for seaside resorts are often not directly comparable either over a period of time or between individual resorts as the parameters of the information collection vary greatly even between local authorities (see Agarwal, 1997a for a fuller discussion of tourism data problems). Thus, in the absence of such tourism data, relevant socioeconomic data (e.g., unemployment, household income, high crime rates, house prices etc.) combined with the Indices of Deprivation data, which relate to previously identified consequences of decline (English Tourist Board, 1991; British Resorts Association, 2000; English Heritage, 2003, 2007; British Urban Regeneration Association, 2007; Coastal Communities Alliance, 2010), provided a crude indication of resort decline.

Third, the quantitative approach of this study is limited in its explanations of resort decline, area change and social exclusion. The study produced a national seaside resort
database – a wide range of data representing economic, social, demographic and environmental characteristics of seaside LSOAs, wards, resorts and districts was assembled from a range of data sources – including time-series absolute and relative variables. But consistent data for LSOAs and wards is lacking, meaning that any analysis can only offer strong explanations of local authority level differences (see pages 99-101 for a fuller discussion of the data problems relating to seaside resorts). For seaside LSOAs and wards, there are not an equal number of years for each variable, yet most of the programmes running panel data is set for what is termed ‘balanced panel’, whereby each resort have the same number of years data for each variable. The high frequency of missing data relating to wards and (especially) LSOAs across 2001-2010 meant it would had been hard to justify converting an unbalanced panel into a balanced panel, as the efficiency loss might be considerable and because converting into a panel may result in biased sample, thus the decision was made not to pursue panel data analysis. The quantitative approach of this study is prima facie descriptive, as the analysis tends to identify differences and isolate variables, rather than to illuminate their interaction, and is limited in the extent to which it can shed light on the factors of resort change and exclusion, rather than their outcomes.

7.4 Future research priorities

Traditionally seaside resorts have been one of the least understood of Britain’s ‘problem areas’. This thesis has broken new ground by reporting on an exploratory data analysis to probe the influence of resort decline on social exclusion in England’s seaside resorts. In particular, the research has produced a comprehensive and detailed comparative study of social exclusion in English seaside resorts through the manipulation and application of an existing dataset, namely the Indices of Deprivation. It has also drawn attention to differences in socio-economic structure between deprived and non-deprived resorts, and the factors that may explain these differences. In addition, the research developed a typology of disadvantage across localities within England’s seaside resorts, thus providing an indication
of some of the causes and consequences of local area exclusion, and of the variations in need between different groups of deprived seaside neighbourhoods.

The work described above is however the first stage in a process of research directed towards understanding economic change, spatial development and social exclusion in English seaside resorts. Indeed, for the first time research generated a national seaside resort database, which given the dearth of available specific resort data, constitutes a significant and valuable academic resource. Future analyses will increasingly draw upon data from the seaside resort database, which consists of a wide range of variables relating to their demographic, social and economic ecologies. These data will be used to develop further five important aspects of the study:

- In relation to resort decline, the present research identified, at times, considerable variation in economic performance between geographically proximate resorts. In light of the lack of knowledge of the underlying factors which explain the uneven geography of economic performance across England’s seaside resorts, future analyses will explore in greater depth differences in economic performance between seaside resorts of England and the factors that may explain these differences. Drawing on data from the national seaside resort database, the determinants of relative economic performance of seaside resorts will be investigated using methods that can account for the complexity of the issue. In particular, an econometric modelling approach will be employed to determine the influence of a wide range of indicators representing economic, human, cultural and environmental capital on three distinct components of economic performance, namely productivity, employment and labour market participation. Taking into account the different dimensions of economic performance identified in this analysis, a typology of seaside resorts will be constructed, reflecting relatively good (upper quartile) and poor (lower quartile) performance based on the observed dimensions. This work will aid understanding of the resort economy and of
its internal dynamics. In addition though, significant policy implications are likely to emerge from the study’s findings which will inform the development of policy on seaside resort regeneration.

- The influence of resort decline on social exclusion will be further investigated through in-depth study of six seaside resorts, two resorts will be in the upper quartile (‘well performing’) and two in the lower quartile (‘under-performing’). The fifth and sixth resorts will neither rank among the strongest or weakest seaside economies. Thus, case study selection will be informed by the results of the previous classification. Within each case study, primary data will be collected in the form of face-to-face semi structured interviews with key informants of organisations who are responsible for providing support and advice to local groups of people who are most likely to experience social exclusion. A purposeful and theoretical sampling strategy will be employed to ensure that the wide spectrum of groups of people who may be ‘at risk’ to social exclusion – including lone parents, the elderly, those with chronic illnesses, the disabled, the unemployed, young people and victims of crime – are represented. Examples of such organisation which are likely to be contacted and which have presence within English seaside resorts include Age Concern, the Prince’s Trust, relevant local authority departments, Victim Support, Housing Associations, Housing Action Groups and the YMCA. The interviews will contain a mix of closed and open-ended question and allow the researcher to examine, first, the way in which these groups are socially excluded and, second, the influence of resort decline on their circumstances.

- While little is known about the main cause(s) of social exclusion, the present research has identified in-migration as a potential underlying driver. Thus, future analyses will explore the composition, level and extent of in-migration in a range of resorts experiencing differing levels of social exclusion and examine the impact of migrants
on their socio-economic structures, including property markets. The influence of in-migration on social exclusion will be assessed in two different ways. First, by reviewing and processing the extensive secondary data gathered for seaside neighbourhoods, wards, resorts and districts to determine the composition, volume and distribution of in-migration, as well as the degree to which in-migration has changed the socio-economic structure of deprived and non-deprived resorts. Second, through in-depth study of six seaside resorts – four chosen to represent the typology of deprived seaside areas identified in this study, whereas the fifth and sixth resorts will be non-deprived, with one exhibiting low in-migration and the other high in-migration. Within each case study, a life-course analysis using semi-structured interviews of different groups of migrants will be undertaken. The interviews will provide information on individuals’ motivation, as well as on items such as skills, work experience, welfare benefits and aspirations.

- Taken together, the three studies above will provide a basis for subsequent research to ascertain the interplay and relative importance of a variety of tourism, social and economic factors within spirals of decline in deprived seaside resorts and their neighbourhoods. Indeed, by analysing the determinants of relative economic performance of seaside resorts, investigating the influence of resort decline on social exclusion through in-depth study of resorts and assessing the influence of in-migration on social exclusion, it will be possible to develop a theoretical model for resort change designed to be tested quantitatively, though structural equation modelling.

- In relation to the manifestation of social exclusion in English seaside resorts, the research produced a typology of deprived seaside localities. Inspection of the maps revealed that, in the majority of resorts, similar deprived localities are spatially clustered and that different deprived localities are, if not neighbouring each other, in close proximity. Future analyses will explore spatial patterns of deprivation in a more
sophisticated manner by means of some in-depth spatial analysis. In particular, spatial autocorrelation analysis and nearest neighbour analysis will be used to investigate the extent to which some deprived localities are located within much larger concentrations of deprivation, and which are more isolated. This information will then enable the development of a spatial context typology, which, given the emerging policy and academic focus on concentrated deprivation in urban areas and its presumed pernicious effects, is of significant value.

Thus, this study highlights several avenues for further research. Only by addressing these research shortcomings, can there be in-depth knowledge and understanding of the manifestation of social exclusion in English seaside resorts, and of its relationship with resort decline.
References

Institute of Fiscal Studies. (2012) **Living Standards, Poverty and Inequality in the UK.** London IFS.

330

Appendix A: Tables of Results (Chapter 5)

All tables and figures are the work of the author.
<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>χ^2</th>
<th>Cramer’s V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland n = 270, 92%</td>
<td>Coastal n = 24, 8%</td>
<td>Total n = 294</td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>66</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>69.8</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>57</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>57.9</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>66</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>81</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>75.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>65</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>56</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>59.7</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>68</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>81</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>75.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>67</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>70.7</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>58</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>59.7</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>76</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>72.6</td>
<td>6.4</td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>64</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.9</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>61</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>61.5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>67</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>78</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>72.6</td>
<td>6.4</td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>73</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>73.5</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>56</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>58.8</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.9</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.9</td>
<td>6.1</td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>8</td>
<td>80</td>
<td>5.4 n/a</td>
</tr>
<tr>
<td></td>
<td>73.5</td>
<td>6.5</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>57</td>
<td>9</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60.6</td>
<td>5.4</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>67</td>
<td>4</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65.2</td>
<td>5.8</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>74</td>
<td>3</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70.7</td>
<td>6.3</td>
<td>26.2</td>
<td></td>
</tr>
</tbody>
</table>
Table A2: Inland v Coastal, 2007

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>Average rank of LSOA scores</th>
<th>Extent rank</th>
<th>Local concentration rank</th>
<th>Income rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inland n = 270, 92%</td>
<td>Coastal n = 24, 8%</td>
<td>Total 294</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>χ²</td>
<td>Cramer’s V</td>
<td>χ²</td>
<td>df</td>
</tr>
</tbody>
</table>

Average rank of LSOA scores

<table>
<thead>
<tr>
<th>Measure</th>
<th>District type</th>
<th>Observed</th>
<th>Expected</th>
<th>% within district</th>
<th>Inland</th>
<th>Coastal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>Observed</td>
<td>66</td>
<td>9</td>
<td>24.4%</td>
<td>68.9</td>
<td>6.1</td>
<td>25.5</td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>52</td>
<td>9</td>
<td>19.3%</td>
<td>56.0</td>
<td>5.0</td>
<td>20.7</td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>70</td>
<td>5</td>
<td>25.9%</td>
<td>68.9</td>
<td>6.1</td>
<td>25.5</td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>82</td>
<td>1</td>
<td>30.4%</td>
<td>76.2</td>
<td>6.8</td>
<td>28.2</td>
</tr>
</tbody>
</table>

Average rank of LSOA ranks

<table>
<thead>
<tr>
<th>Measure</th>
<th>District type</th>
<th>Observed</th>
<th>Expected</th>
<th>% within district</th>
<th>Inland</th>
<th>Coastal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>Observed</td>
<td>65</td>
<td>8</td>
<td>24.1%</td>
<td>67.0</td>
<td>6.0</td>
<td>24.8</td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>52</td>
<td>11</td>
<td>19.3%</td>
<td>57.9</td>
<td>5.1</td>
<td>21.4</td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>70</td>
<td>4</td>
<td>25.9%</td>
<td>68.0</td>
<td>6.0</td>
<td>25.2</td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>83</td>
<td>1</td>
<td>30.7%</td>
<td>77.1</td>
<td>6.9</td>
<td>28.6</td>
</tr>
</tbody>
</table>

Extent rank

<table>
<thead>
<tr>
<th>Measure</th>
<th>District type</th>
<th>Observed</th>
<th>Expected</th>
<th>% within district</th>
<th>Inland</th>
<th>Coastal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>Observed</td>
<td>69</td>
<td>10</td>
<td>25.6%</td>
<td>72.6</td>
<td>6.4</td>
<td>26.9</td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>56</td>
<td>8</td>
<td>20.7%</td>
<td>58.8</td>
<td>5.2</td>
<td>21.8</td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>4</td>
<td>25.6%</td>
<td>67.0</td>
<td>6.0</td>
<td>24.8</td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>76</td>
<td>2</td>
<td>28.1%</td>
<td>71.6</td>
<td>6.4</td>
<td>26.5</td>
</tr>
</tbody>
</table>

Local concentration rank

<table>
<thead>
<tr>
<th>Measure</th>
<th>District type</th>
<th>Observed</th>
<th>Expected</th>
<th>% within district</th>
<th>Inland</th>
<th>Coastal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>Observed</td>
<td>61</td>
<td>11</td>
<td>22.6%</td>
<td>66.1</td>
<td>5.9</td>
<td>24.5</td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>63</td>
<td>7</td>
<td>23.3%</td>
<td>64.3</td>
<td>5.7</td>
<td>23.8</td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>5</td>
<td>25.6%</td>
<td>68.0</td>
<td>6.0</td>
<td>25.2</td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>77</td>
<td>1</td>
<td>28.5%</td>
<td>71.6</td>
<td>6.4</td>
<td>26.5</td>
</tr>
</tbody>
</table>

Income rank

<table>
<thead>
<tr>
<th>Measure</th>
<th>District type</th>
<th>Observed</th>
<th>Expected</th>
<th>% within district</th>
<th>Inland</th>
<th>Coastal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>Observed</td>
<td>73</td>
<td>7</td>
<td>27.0%</td>
<td>73.5</td>
<td>6.5</td>
<td>27.2</td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>57</td>
<td>7</td>
<td>21.1%</td>
<td>58.8</td>
<td>5.2</td>
<td>21.8</td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>67</td>
<td>8</td>
<td>24.8%</td>
<td>68.9</td>
<td>6.1</td>
<td>25.5</td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>73</td>
<td>2</td>
<td>27.0%</td>
<td>68.9</td>
<td>6.1</td>
<td>25.5</td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>73.5</td>
<td>26.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td>55</td>
<td>58.8</td>
<td>20.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
<td>68.9</td>
<td>25.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td></td>
<td>73</td>
<td>68.9</td>
<td>27.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.5</td>
<td>33.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>5.2</td>
<td>37.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>6.1</td>
<td>20.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6.1</td>
<td>8.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>80</td>
<td>27.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5</td>
<td>n/a</td>
<td>21.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>8.3%</td>
<td>25.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.087</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A3: Inland v Coastal, 2010

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>Inland n = 251, 92%</th>
<th>Coastal n = 22, 8%</th>
<th>Total 273</th>
<th>χ²</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>63</td>
<td>7</td>
<td>70</td>
<td>10.0</td>
<td>3</td>
<td>0.018*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>64.4</td>
<td>5.6</td>
<td>25.6</td>
<td>0.192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.1%</td>
<td>31.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>47</td>
<td>9</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>51.5</td>
<td>4.5</td>
<td>20.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>18.7%</td>
<td>40.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>65</td>
<td>5</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>64.4</td>
<td>5.6</td>
<td>25.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.9%</td>
<td>22.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>76</td>
<td>1</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>70.8</td>
<td>6.2</td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>30.3%</td>
<td>4.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>60</td>
<td>8</td>
<td>68</td>
<td>10.8</td>
<td>3</td>
<td>0.012**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>62.5</td>
<td>5.5</td>
<td>24.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>23.9%</td>
<td>36.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>49</td>
<td>9</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>53.3</td>
<td>4.7</td>
<td>21.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>19.5%</td>
<td>40.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>66</td>
<td>4</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>64.4</td>
<td>5.6</td>
<td>25.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>26.3%</td>
<td>18.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>76</td>
<td>1</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>70.8</td>
<td>6.2</td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>30.3%</td>
<td>4.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>66</td>
<td>7</td>
<td>73</td>
<td>5.7</td>
<td>3</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.1</td>
<td>5.9</td>
<td>26.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>26.3%</td>
<td>31.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>49</td>
<td>8</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>52.4</td>
<td>4.6</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>19.5%</td>
<td>36.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>67</td>
<td>5</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>66.2</td>
<td>5.8</td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>26.7%</td>
<td>22.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>69</td>
<td>2</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>65.3</td>
<td>5.7</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.5%</td>
<td>9.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>56</td>
<td>9</td>
<td>65</td>
<td>7.3</td>
<td>3</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>59.8</td>
<td>5.2</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>22.3%</td>
<td>40.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>59</td>
<td>6</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>59.8</td>
<td>5.2</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>23.5%</td>
<td>27.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>66</td>
<td>6</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>66.2</td>
<td>5.8</td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>26.3%</td>
<td>27.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>70</td>
<td>1</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>65.3</td>
<td>5.7</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.9%</td>
<td>4.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>68</td>
<td>6</td>
<td>74</td>
<td>2.5</td>
<td>3</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.0</td>
<td>6.0</td>
<td>27.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.1%</td>
<td>27.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>52</td>
<td>7</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>54.2</td>
<td>4.8</td>
<td>21.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>20.7%</td>
<td>31.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>64</td>
<td>6</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>64.4</td>
<td>5.6</td>
<td>25.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.5%</td>
<td>27.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>67</td>
<td>3</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>64.4</td>
<td>5.6</td>
<td>25.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>26.7%</td>
<td>13.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>7</td>
<td>74</td>
<td>3.7</td>
<td>3</td>
<td>0.289</td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>7</td>
<td>74</td>
<td>3</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
<td>6</td>
<td>72</td>
<td>3</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
<td>2</td>
<td>68</td>
<td>3</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Deprivation measure</td>
<td>Deprivation level</td>
<td>District type</td>
<td>Inland n = 270, 82%</td>
<td>Seaside n = 60, 18%</td>
<td>Total 330</td>
<td>χ^2</td>
<td>Cramer’s V</td>
<td>df</td>
<td>p</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>66</td>
<td>12</td>
<td>78</td>
<td>17.5</td>
<td>23.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>63.8</td>
<td>14.2</td>
<td>3</td>
<td>0.001***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>24.4%</td>
<td>20.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>57</td>
<td>26</td>
<td>83</td>
<td>14.9</td>
<td>24.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>67.9</td>
<td>15.1</td>
<td>3</td>
<td>0.002**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>21.1%</td>
<td>43.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>66</td>
<td>16</td>
<td>82</td>
<td>10.6</td>
<td>24.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>67.1</td>
<td>14.9</td>
<td>3</td>
<td>0.014**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>24.4%</td>
<td>26.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>81</td>
<td>6</td>
<td>87</td>
<td>6.8</td>
<td>26.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>71.2</td>
<td>15.8</td>
<td>3</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>30.0%</td>
<td>10.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>65</td>
<td>15</td>
<td>80</td>
<td>10.6</td>
<td>3</td>
<td>0.014**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>65.5</td>
<td>14.5</td>
<td>3</td>
<td>0.077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>24.1%</td>
<td>25.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>56</td>
<td>24</td>
<td>80</td>
<td>10.6</td>
<td>23.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>65.5</td>
<td>14.5</td>
<td>3</td>
<td>0.180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>20.7%</td>
<td>40.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>68</td>
<td>15</td>
<td>83</td>
<td>10.6</td>
<td>24.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>67.9</td>
<td>15.1</td>
<td>3</td>
<td>0.004**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.2%</td>
<td>25.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>81</td>
<td>6</td>
<td>87</td>
<td>6.8</td>
<td>26.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>71.2</td>
<td>15.8</td>
<td>3</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>30.0%</td>
<td>10.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>68</td>
<td>10</td>
<td>78</td>
<td>6.8</td>
<td>23.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>63.8</td>
<td>14.2</td>
<td>3</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.2%</td>
<td>16.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>58</td>
<td>24</td>
<td>82</td>
<td>6.8</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>67.1</td>
<td>14.9</td>
<td>3</td>
<td>0.180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>21.5%</td>
<td>40.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>16</td>
<td>85</td>
<td>6.8</td>
<td>25.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>69.5</td>
<td>15.5</td>
<td>3</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>26.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>75</td>
<td>10</td>
<td>85</td>
<td>6.8</td>
<td>25.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>69.5</td>
<td>15.5</td>
<td>3</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>27.8%</td>
<td>16.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>64</td>
<td>13</td>
<td>77</td>
<td>13.0</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>63.0</td>
<td>14.0</td>
<td>3</td>
<td>0.199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>23.7%</td>
<td>21.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>60</td>
<td>22</td>
<td>83</td>
<td>13.0</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>67.1</td>
<td>14.9</td>
<td>3</td>
<td>0.199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>22.2%</td>
<td>36.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>15</td>
<td>83</td>
<td>13.0</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>68.7</td>
<td>15.3</td>
<td>3</td>
<td>0.199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>25.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>77</td>
<td>10</td>
<td>87</td>
<td>13.0</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>71.2</td>
<td>15.8</td>
<td>3</td>
<td>0.199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>28.5%</td>
<td>16.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>73</td>
<td>8</td>
<td>81</td>
<td>13.0</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>66.3</td>
<td>14.7</td>
<td>3</td>
<td>0.199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>27.0%</td>
<td>13.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>56</td>
<td>25</td>
<td>81</td>
<td>13.0</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>66.3</td>
<td>14.7</td>
<td>3</td>
<td>0.199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>20.7%</td>
<td>41.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>14</td>
<td>83</td>
<td>13.0</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>67.9</td>
<td>15.1</td>
<td>3</td>
<td>0.199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>23.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>72</td>
<td>13</td>
<td>85</td>
<td>13.0</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>69.5</td>
<td>15.5</td>
<td>3</td>
<td>0.199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>26.7%</td>
<td>21.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>65.5</td>
<td>26.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>14.5</td>
<td>13.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>24.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.6</td>
<td>.188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>0.009**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>57</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>65.5</td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.1%</td>
<td>38.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>67</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>69.5</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.8%</td>
<td>30.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>74</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>69.5</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.4%</td>
<td>18.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Deprivation measure</td>
<td>Deprivation level</td>
<td>District type</td>
<td>(\chi^2)</td>
<td>Cramer's V</td>
<td>df</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>----</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inland (n = 270, 82%)</td>
<td>Seaside (n = 60, 18%)</td>
<td>Total (370)</td>
<td>(\chi^2)</td>
<td>df</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>66</td>
<td>13</td>
<td>79</td>
<td>24.5</td>
<td>3</td>
<td>0.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>64.6</td>
<td>14.4</td>
<td>23.9</td>
<td>.273</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>24.4%</td>
<td>21.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>52</td>
<td>28</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>65.5</td>
<td>14.5</td>
<td>24.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>19.3%</td>
<td>46.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>70</td>
<td>14</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.7</td>
<td>15.3</td>
<td>25.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.9%</td>
<td>23.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>82</td>
<td>5</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>71.2</td>
<td>15.8</td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>30.4%</td>
<td>8.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>65</td>
<td>15</td>
<td>80</td>
<td>22.8</td>
<td>3</td>
<td>0.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>65.5</td>
<td>14.5</td>
<td>24.2</td>
<td>.263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>24.1%</td>
<td>25.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>52</td>
<td>26</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>63.8</td>
<td>14.2</td>
<td>23.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>19.3%</td>
<td>43.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>70</td>
<td>15</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>69.5</td>
<td>15.5</td>
<td>25.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.9%</td>
<td>25.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>83</td>
<td>4</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>71.2</td>
<td>15.8</td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>30.7%</td>
<td>6.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>69</td>
<td>9</td>
<td>78</td>
<td>13.5</td>
<td>3</td>
<td>0.004**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>63.8</td>
<td>14.2</td>
<td>23.6</td>
<td>.203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>15.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>56</td>
<td>25</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>66.3</td>
<td>14.7</td>
<td>24.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>20.7%</td>
<td>41.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>16</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>69.5</td>
<td>15.5</td>
<td>25.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>26.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>76</td>
<td>10</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>70.4</td>
<td>15.6</td>
<td>26.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>28.1%</td>
<td>16.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>61</td>
<td>16</td>
<td>77</td>
<td>4.3</td>
<td>3</td>
<td>0.227</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>63.0</td>
<td>14.0</td>
<td>23.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>22.6%</td>
<td>26.7%</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>63</td>
<td>19</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.1</td>
<td>14.9</td>
<td>24.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>23.3%</td>
<td>31.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>15</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.7</td>
<td>15.3</td>
<td>25.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>25.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>77</td>
<td>10</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>71.2</td>
<td>15.8</td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>28.5%</td>
<td>16.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>73</td>
<td>8</td>
<td>81</td>
<td>12.6</td>
<td>3</td>
<td>0.005**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>66.3</td>
<td>14.7</td>
<td>24.5</td>
<td>.196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.0%</td>
<td>13.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>57</td>
<td>25</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.1</td>
<td>14.9</td>
<td>24.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>21.1%</td>
<td>41.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>67</td>
<td>14</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>66.3</td>
<td>14.7</td>
<td>24.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>24.8%</td>
<td>23.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>73</td>
<td>13</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>70.4</td>
<td>15.6</td>
<td>26.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.0%</td>
<td>21.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>Observed</td>
<td>Expected</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>8</td>
<td></td>
<td>80</td>
<td>13.4</td>
<td></td>
<td>0.202</td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td></td>
<td>65.5</td>
<td>14.5</td>
<td></td>
<td>26.7</td>
<td>13.3</td>
<td></td>
<td>24.2</td>
</tr>
<tr>
<td>BA</td>
<td></td>
<td></td>
<td>55</td>
<td>25</td>
<td></td>
<td>65.5</td>
<td>14.5</td>
<td></td>
<td>24.2</td>
</tr>
<tr>
<td>LD</td>
<td></td>
<td></td>
<td>68.7</td>
<td>15.3</td>
<td></td>
<td>20.4</td>
<td>41.7</td>
<td></td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>14</td>
<td></td>
<td>25.9</td>
<td>23.3</td>
<td></td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td>13</td>
<td></td>
<td>70.4</td>
<td>15.6</td>
<td></td>
<td>21.7</td>
</tr>
</tbody>
</table>
Table A6: Inland v Seaside, 2010

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>Deprivation level</th>
<th>District type</th>
<th>Deprivation level</th>
<th>District type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland</td>
<td>Seaside</td>
<td>Total</td>
<td>χ^2</td>
<td>Cramer’s V</td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>63</td>
<td>11</td>
<td>74</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>61.1</td>
<td>12.9</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25.1%</td>
<td>20.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>60</td>
<td>13</td>
<td>73</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>60.3</td>
<td>12.7</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.5%</td>
<td>45.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>66</td>
<td>10</td>
<td>77</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>61.1</td>
<td>12.9</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.3%</td>
<td>15.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>56</td>
<td>16</td>
<td>72</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>59.4</td>
<td>12.6</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22.3%</td>
<td>30.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>68</td>
<td>7</td>
<td>75</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>61.9</td>
<td>13.1</td>
<td>24.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27.1%</td>
<td>13.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| AA | Observed | 47 | 26 | 73 | | | | | |
| Expected | 60.3 | 12.7 | | | | | | | |
| % within district | 18.7% | 49.1% | | | | | | |
| BA | Observed | 65 | 12 | 77 | | | | | |
| Expected | 63.6 | 13.4 | | | | | | |
| % within district | 25.9% | 22.6% | | | | | | |
| LD | Observed | 76 | 4 | 80 | | | | | |
| Expected | 66.1 | 13.9 | | | | | | |
| % within district | 30.3% | 7.5% | | | | | |
| AA | Observed | 49 | 24 | 73 | | | | | |
| Expected | 60.3 | 12.7 | | | | | | |
| % within district | 19.5% | 45.3% | | | | | | |
| BA | Observed | 66 | 12 | 78 | | | | | |
| Expected | 64.4 | 13.6 | | | | | | |
| % within district | 26.3% | 22.6% | | | | | | |
| LD | Observed | 76 | 4 | 80 | | | | | |
| Expected | 66.1 | 13.9 | | | | | | |
| % within district | 30.3% | 7.5% | | | | | |
| AA | Observed | 49 | 25 | 74 | | | | | |
| Expected | 61.1 | 12.9 | | | | | | |
| % within district | 19.5% | 47.2% | | | | | | |
| BA | Observed | 66 | 10 | 77 | | | | | |
| Expected | 63.6 | 13.4 | | | | | | |
| % within district | 26.7% | 18.9% | | | | | | |
| LD | Observed | 69 | 10 | 79 | | | | | |
| Expected | 65.2 | 13.8 | | | | | | |
| % within district | 27.5% | 18.9% | | | | | |
| AA | Observed | 59 | 17 | 76 | | | | | |
| Expected | 62.8 | 13.3 | | | | | | |
| % within district | 23.5% | 32.1% | | | | | | |
| BA | Observed | 66 | 10 | 76 | | | | | |
| Expected | 62.8 | 13.3 | | | | | | |
| % within district | 26.3% | 18.9% | | | | | | |
| LD | Observed | 70 | 10 | 80 | | | | | |
| Expected | 66.1 | 13.9 | | | | | | |
| % within district | 27.9% | 18.9% | | | | | |
| AA | Observed | 52 | 23 | 75 | | | | | |
| Expected | 61.9 | 13.1 | | | | | | |
| % within district | 20.7% | 43.4% | | | | | | |
| BA | Observed | 64 | 12 | 76 | | | | | |
| Expected | 62.8 | 13.3 | | | | | | |
| % within district | 25.5% | 22.6% | | | | | | |
| LD | Observed | 67 | 11 | 78 | | | | | |
| Expected | 64.4 | 13.6 | | | | | | |
| % within district | 26.7% | 20.8% | | | | | | |</p>
<table>
<thead>
<tr>
<th>Employment rank</th>
<th>MD</th>
<th>Observed</th>
<th>Expected</th>
<th>% within district</th>
<th>p-value</th>
<th>df</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>67</td>
<td>61.1</td>
<td>26.7%</td>
<td>7</td>
<td>74</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.9</td>
<td>13.2%</td>
<td>.210</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>0.004**</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>52</td>
<td>61.9</td>
<td>20.7%</td>
<td>23</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.1</td>
<td>43.4%</td>
<td>24.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>66</td>
<td>62.8</td>
<td>26.3%</td>
<td>10</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.3</td>
<td>18.9%</td>
<td>25.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A7: Coastal v Seaside, 2004

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coastal n = 24, 29%</td>
<td>Seaside n = 60, 71%</td>
<td>Total n = 84</td>
<td>χ^2</td>
<td>Cramer’s V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>10</td>
<td>12</td>
<td>22</td>
<td>5.3</td>
<td>3</td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6.3</td>
<td>15.7</td>
<td>41.7%</td>
<td>20.0%</td>
<td>26.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>6</td>
<td>26</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>9.1</td>
<td>22.9</td>
<td>43.3%</td>
<td>38.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>7</td>
<td>16</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6.6</td>
<td>16.4</td>
<td>29.2%</td>
<td>26.7%</td>
<td>27.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>2.0</td>
<td>5.0</td>
<td>4.2%</td>
<td>10.0%</td>
<td>8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>8</td>
<td>15</td>
<td>23</td>
<td>1.2</td>
<td>n/a</td>
<td>0.762</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6.6</td>
<td>16.4</td>
<td>33.3%</td>
<td>25.0%</td>
<td>27.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>9</td>
<td>24</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>9.4</td>
<td>23.6</td>
<td>37.5%</td>
<td>40.0%</td>
<td>39.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>15</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6.0</td>
<td>15.0</td>
<td>25.0</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>2.0</td>
<td>5.0</td>
<td>4.2%</td>
<td>10.0%</td>
<td>8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>5.9</td>
<td>n/a</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>5.7</td>
<td>14.3</td>
<td>41.7%</td>
<td>16.7%</td>
<td>23.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>7</td>
<td>24</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>8.9</td>
<td>22.1</td>
<td>29.2%</td>
<td>40.0%</td>
<td>36.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>4</td>
<td>16</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>5.7</td>
<td>14.3</td>
<td>16.7%</td>
<td>26.7%</td>
<td>23.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>3</td>
<td>10</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>3.7</td>
<td>9.3</td>
<td>12.5%</td>
<td>16.7%</td>
<td>15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>11</td>
<td>13</td>
<td>24</td>
<td>6.2</td>
<td>n/a</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6.9</td>
<td>17.1</td>
<td>45.8%</td>
<td>21.7%</td>
<td>28.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>6</td>
<td>22</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>8.0</td>
<td>20.0</td>
<td>25.0%</td>
<td>36.7%</td>
<td>33.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>15</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6.0</td>
<td>15.0</td>
<td>25.0%</td>
<td>25.0%</td>
<td>25.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>3.1</td>
<td>7.9</td>
<td>4.2%</td>
<td>16.7%</td>
<td>13.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>Inv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>4.3</td>
<td>10.7</td>
<td>29.2%</td>
<td>13.3%</td>
<td>17.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>8</td>
<td>25</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>9.4</td>
<td>23.6</td>
<td>33.3%</td>
<td>41.7%</td>
<td>39.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>14</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>5.7</td>
<td>14.3</td>
<td>25.0%</td>
<td>23.3%</td>
<td>23.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>3</td>
<td>13</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>4.6</td>
<td>11.4</td>
<td>12.5%</td>
<td>21.7%</td>
<td>19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>AA</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>4.6</td>
<td>33.3%</td>
<td></td>
<td>9</td>
<td>9.1</td>
<td>37.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>11.4</td>
<td>13.3%</td>
<td></td>
<td>23</td>
<td>22.9</td>
<td>38.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>19.0</td>
<td></td>
<td></td>
<td>32</td>
<td>38.1</td>
<td></td>
</tr>
</tbody>
</table>
Table A8: Coastal v Seaside, 2007

<table>
<thead>
<tr>
<th>Deprivation measure level</th>
<th>District type</th>
<th>Coastal n = 24, 29%</th>
<th>Seaside n = 60, 71%</th>
<th>Total 84</th>
<th>(\chi^2)</th>
<th>Cramer's V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>9</td>
<td>13</td>
<td>22</td>
<td>Inv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>6.3</td>
<td>15.7</td>
<td>21.7</td>
<td>26.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>37.5%</td>
<td>21.7%</td>
<td>26.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>9</td>
<td>28</td>
<td>37</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>10.6</td>
<td>26.4</td>
<td>46.7%</td>
<td>44.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>37.5%</td>
<td>26.4%</td>
<td>46.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>5</td>
<td>14</td>
<td>19</td>
<td>22.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.4</td>
<td>13.6</td>
<td>23.3%</td>
<td>22.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>20.8%</td>
<td>23.3%</td>
<td>22.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>1.7</td>
<td>4.3</td>
<td>8.3%</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>4.2%</td>
<td>8.3%</td>
<td>7.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>8</td>
<td>15</td>
<td>23</td>
<td>Inv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>6.6</td>
<td>16.4</td>
<td>25.0%</td>
<td>27.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>33.3%</td>
<td>25.0%</td>
<td>27.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>11</td>
<td>26</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>10.6</td>
<td>26.4</td>
<td>43.3%</td>
<td>44.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>45.8%</td>
<td>43.3%</td>
<td>44.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>4</td>
<td>15</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.4</td>
<td>13.6</td>
<td>25.0%</td>
<td>22.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>16.7%</td>
<td>25.0%</td>
<td>22.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>1.4</td>
<td>3.6</td>
<td>6.7%</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>4.2%</td>
<td>6.7%</td>
<td>6.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>10</td>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.4</td>
<td>13.6</td>
<td>15.0%</td>
<td>22.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>41.7%</td>
<td>15.0%</td>
<td>22.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>8</td>
<td>25</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>9.4</td>
<td>23.6</td>
<td>41.7%</td>
<td>39.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>33.3%</td>
<td>41.7%</td>
<td>39.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>4</td>
<td>16</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.7</td>
<td>14.3</td>
<td>25.0%</td>
<td>23.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>16.7%</td>
<td>25.0%</td>
<td>23.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>3.4</td>
<td>8.6</td>
<td>16.7%</td>
<td>14.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>8.3%</td>
<td>16.7%</td>
<td>14.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>11</td>
<td>16</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.7</td>
<td>19.3</td>
<td>26.7%</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>45.8%</td>
<td>26.7%</td>
<td>32.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>7</td>
<td>19</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.4</td>
<td>18.6</td>
<td>31.7%</td>
<td>31.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>29.2%</td>
<td>31.7%</td>
<td>31.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>5</td>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.7</td>
<td>14.3</td>
<td>25.0%</td>
<td>23.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>20.8%</td>
<td>25.0%</td>
<td>23.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>3.1</td>
<td>7.9</td>
<td>16.7%</td>
<td>13.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>4.2%</td>
<td>16.7%</td>
<td>13.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>Inv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.3</td>
<td>10.7</td>
<td>13.3%</td>
<td>17.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>29.2%</td>
<td>13.3%</td>
<td>17.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>7</td>
<td>25</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>9.1</td>
<td>22.9</td>
<td>41.7%</td>
<td>38.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>29.2%</td>
<td>41.7%</td>
<td>38.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>8</td>
<td>14</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>6.3</td>
<td>15.7</td>
<td>23.3%</td>
<td>26.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>33.3%</td>
<td>23.3%</td>
<td>26.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>2</td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.3</td>
<td>10.7</td>
<td>21.7%</td>
<td>17.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>8.3%</td>
<td>21.7%</td>
<td>17.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>Inv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>9</td>
<td>25</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Expected</td>
<td>9.7</td>
<td>24.3</td>
<td>40.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>37.5%</td>
<td>41.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>5</td>
<td>14</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Expected</td>
<td>5.4</td>
<td>13.6</td>
<td>22.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>20.8%</td>
<td>23.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>2</td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Expected</td>
<td>4.3</td>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>8.3%</td>
<td>21.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A9: Coastal v Seaside, 2010

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>Coastal n = 22, 29%</th>
<th>Seaside n = 53, 71%</th>
<th>Total 75</th>
<th>χ^2</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>7</td>
<td>11</td>
<td>18</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.3</td>
<td>12.7</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>31.8%</td>
<td>20.8%</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>9</td>
<td>26</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>10.3</td>
<td>24.7</td>
<td>46.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>40.9%</td>
<td>49.1%</td>
<td>46.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>5</td>
<td>12</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.0</td>
<td>12.0</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>22.7%</td>
<td>22.6%</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>1.5</td>
<td>3.5</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>4.5%</td>
<td>7.5%</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>6.2</td>
<td>14.8</td>
<td>28.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>36.4%</td>
<td>24.5%</td>
<td>28.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>9</td>
<td>24</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>9.7</td>
<td>23.3</td>
<td>44.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>40.9%</td>
<td>45.3%</td>
<td>44.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>4</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.7</td>
<td>11.3</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>18.2%</td>
<td>22.6%</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>1.5</td>
<td>3.5</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>4.5%</td>
<td>7.5%</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.4</td>
<td>10.6</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>31.8%</td>
<td>15.1%</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>8</td>
<td>25</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>9.7</td>
<td>23.3</td>
<td>44.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>36.4%</td>
<td>47.2%</td>
<td>44.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.4</td>
<td>10.6</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>22.7%</td>
<td>18.9%</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>3.5</td>
<td>8.5</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>9.1%</td>
<td>18.9%</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.3</td>
<td>17.7</td>
<td>33.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>40.9%</td>
<td>30.2%</td>
<td>33.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6</td>
<td>17</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>6.7</td>
<td>16.3</td>
<td>30.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.3%</td>
<td>32.1%</td>
<td>30.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.7</td>
<td>11.3</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.3%</td>
<td>18.9%</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>3.2</td>
<td>7.8</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>4.5%</td>
<td>18.9%</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>3.8</td>
<td>9.2</td>
<td>17.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.3%</td>
<td>13.2%</td>
<td>17.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>7</td>
<td>23</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>8.8</td>
<td>21.2</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>31.8%</td>
<td>43.4%</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.3</td>
<td>12.7</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.3%</td>
<td>22.6%</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>3</td>
<td>11</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.1</td>
<td>9.9</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>13.6%</td>
<td>20.8%</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>4.1</td>
<td>31.8%</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>9.9</td>
<td>13.2%</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>7</td>
<td>23</td>
<td>31.8%</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>8.8</td>
<td>4.7</td>
<td>31.8%</td>
<td>40.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>27.3%</td>
<td>11.3%</td>
<td>18.9%</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>10</td>
<td>27.3%</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>4.7</td>
<td>11.3</td>
<td>4.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>27.3%</td>
<td>11.3%</td>
<td>18.9%</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>2</td>
<td>13</td>
<td>9.1%</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>4.4</td>
<td>10.6</td>
<td>4.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>9.1%</td>
<td>10.6%</td>
<td>24.5%</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A10: Seaside (+R) v Inland, 2004

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>(z^2)</th>
<th>Cramer's V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland n = 270, 87%</td>
<td>Seaside (+R) n = 39, 13%</td>
<td>Total n = 309</td>
<td>(\chi^2)</td>
<td>C.V</td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>66</td>
<td>10</td>
<td>76</td>
<td>26.4</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>66.4</td>
<td>9.6</td>
<td>24.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>24.4%</td>
<td>25.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>57</td>
<td>21</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>68.2</td>
<td>9.8</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>21.1%</td>
<td>53.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>66</td>
<td>8</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>64.7</td>
<td>9.3</td>
<td>23.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>24.4%</td>
<td>20.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>81</td>
<td>0</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>70.8</td>
<td>10.2</td>
<td>26.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>30.0%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>65</td>
<td>12</td>
<td>77</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>67.3</td>
<td>9.7</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>24.1%</td>
<td>30.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>56</td>
<td>18</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>64.7</td>
<td>9.3</td>
<td>23.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>20.7%</td>
<td>46.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>68</td>
<td>9</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>67.3</td>
<td>9.7</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.2%</td>
<td>23.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>81</td>
<td>0</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>70.8</td>
<td>10.2</td>
<td>26.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>30.0%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>67</td>
<td>9</td>
<td>77</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>66.4</td>
<td>9.6</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>24.8%</td>
<td>23.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>58</td>
<td>20</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>68.2</td>
<td>9.8</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>21.5%</td>
<td>51.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>8</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>67.3</td>
<td>9.7</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>20.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>76</td>
<td>2</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>68.2</td>
<td>9.8</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>28.1%</td>
<td>5.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>64</td>
<td>11</td>
<td>75</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>65.5</td>
<td>9.5</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>23.7%</td>
<td>28.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>61</td>
<td>18</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>69.0</td>
<td>10.0</td>
<td>25.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>22.6%</td>
<td>46.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>67</td>
<td>9</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>66.4</td>
<td>9.6</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>24.8%</td>
<td>23.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>78</td>
<td>1</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>69.0</td>
<td>10.0</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>28.9%</td>
<td>2.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>73</td>
<td>8</td>
<td>81</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>70.8</td>
<td>10.2</td>
<td>26.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>27.0%</td>
<td>20.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>56</td>
<td>20</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>66.4</td>
<td>9.6</td>
<td>24.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>20.7%</td>
<td>51.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>6</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>65.5</td>
<td>9.5</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>15.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>72</td>
<td>5</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>67.3</td>
<td>9.7</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>26.7%</td>
<td>12.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>7</td>
<td>17.6</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>57</td>
<td>67.3</td>
<td>21.1%</td>
<td>20</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>67</td>
<td>65.5</td>
<td>24.8%</td>
<td>8</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>74</td>
<td>68.2</td>
<td>27.4%</td>
<td>4</td>
<td>78</td>
</tr>
</tbody>
</table>
Table A11: Seaside (+R) v Inland, 2007

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>χ^2</th>
<th>Cramer's V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>66</td>
<td>11</td>
<td>77</td>
<td>27.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.3</td>
<td>9.7</td>
<td></td>
<td>.298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>24.4%</td>
<td>28.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>52</td>
<td>20</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>62.9</td>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>19.3%</td>
<td>51.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>70</td>
<td>8</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.2</td>
<td>9.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.9%</td>
<td>20.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>82</td>
<td>0</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>71.7</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>30.4%</td>
<td>0.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>65</td>
<td>12</td>
<td>77</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.3</td>
<td>9.7</td>
<td></td>
<td>.289</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>24.1%</td>
<td>30.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>52</td>
<td>19</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>62.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>19.3%</td>
<td>48.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>70</td>
<td>8</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.2</td>
<td>9.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.9%</td>
<td>20.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>83</td>
<td>0</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>72.5</td>
<td>10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>30.7%</td>
<td>0.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>69</td>
<td>8</td>
<td>77</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.3</td>
<td>9.7</td>
<td></td>
<td>.268</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>20.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>56</td>
<td>20</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>66.4</td>
<td>9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>20.7%</td>
<td>51.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>10</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>69.0</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>25.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>76</td>
<td>1</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.3</td>
<td>9.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>28.1%</td>
<td>2.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>61</td>
<td>14</td>
<td>75</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>65.5</td>
<td>9.5</td>
<td></td>
<td>.218</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>22.6%</td>
<td>35.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>63</td>
<td>15</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.2</td>
<td>9.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>23.3%</td>
<td>38.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>69</td>
<td>9</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.2</td>
<td>9.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>23.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>77</td>
<td>1</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>68.2</td>
<td>9.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>28.5%</td>
<td>2.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>73</td>
<td>8</td>
<td>81</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>70.8</td>
<td>10.2</td>
<td></td>
<td>.234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.0%</td>
<td>20.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>57</td>
<td>20</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>67.3</td>
<td>9.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>21.1%</td>
<td>51.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>67</td>
<td>5</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>62.9</td>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>24.8%</td>
<td>12.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>73</td>
<td>6</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>69.0</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.0%</td>
<td>15.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>72</td>
<td>69.9</td>
<td>26.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td></td>
<td>65.5</td>
<td>20.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td></td>
<td>20</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>70</td>
<td>67.3</td>
<td>25.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td></td>
<td>9.7</td>
<td>17.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td></td>
<td>7</td>
<td>24.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>73</td>
<td>67.3</td>
<td>27.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td></td>
<td>9.7</td>
<td>10.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td></td>
<td>4</td>
<td>24.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A12: Seaside (+R) v Inland, 2010

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>χ^2</th>
<th>Cramer's V</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland n = 251, 87%</td>
<td>Seaside (+R) n = 37, 13%</td>
<td>Total 288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>63</td>
<td>10</td>
<td>73</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>63.6</td>
<td>9.4</td>
<td>25.1%</td>
<td>27.0%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>47</td>
<td>20</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>58.4</td>
<td>8.6</td>
<td>18.7%</td>
<td>54.1%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>65</td>
<td>7</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>62.8</td>
<td>9.3</td>
<td>25.9%</td>
<td>18.9%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>76</td>
<td>0</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>66.2</td>
<td>9.8</td>
<td>30.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>60</td>
<td>12</td>
<td>72</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>62.8</td>
<td>9.3</td>
<td>23.9%</td>
<td>32.4%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>49</td>
<td>18</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>58.4</td>
<td>8.6</td>
<td>19.5%</td>
<td>48.6%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>66</td>
<td>7</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>63.6</td>
<td>9.4</td>
<td>26.3%</td>
<td>18.9%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>76</td>
<td>0</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>66.2</td>
<td>9.8</td>
<td>30.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>66</td>
<td>7</td>
<td>73</td>
<td>29.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>63.6</td>
<td>9.4</td>
<td>26.3%</td>
<td>18.9%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>49</td>
<td>22</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>61.9</td>
<td>9.1</td>
<td>19.5%</td>
<td>59.5%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>67</td>
<td>6</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>63.6</td>
<td>9.4</td>
<td>26.7%</td>
<td>16.2%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>69</td>
<td>2</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>61.9</td>
<td>9.1</td>
<td>27.5%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>56</td>
<td>14</td>
<td>70</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>61.0</td>
<td>9.0</td>
<td>22.3%</td>
<td>37.8%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>59</td>
<td>15</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>64.5</td>
<td>9.5</td>
<td>23.5%</td>
<td>40.5%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>66</td>
<td>6</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>62.8</td>
<td>9.3</td>
<td>26.3%</td>
<td>16.2%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>70</td>
<td>2</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>62.8</td>
<td>9.3</td>
<td>27.9%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>68</td>
<td>7</td>
<td>75</td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>65.4</td>
<td>9.6</td>
<td>27.1%</td>
<td>18.9%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>52</td>
<td>20</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>62.8</td>
<td>9.3</td>
<td>20.7%</td>
<td>54.1%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>64</td>
<td>5</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>60.1</td>
<td>8.9</td>
<td>25.5%</td>
<td>13.5%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>67</td>
<td>5</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>62.8</td>
<td>9.3</td>
<td>26.7%</td>
<td>13.5%</td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>7</td>
<td>Observed</td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

361
Table A13: Seaside (+R) v Coastal, 2004

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>Coastal n = 24, 38%</th>
<th>Seaside (+R) n = 39, 62%</th>
<th>Total n = 63</th>
<th>(\chi^2)</th>
<th>Cramer's V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.6</td>
<td>12.4</td>
<td>20.6</td>
<td>31.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>41.7%</td>
<td>25.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>6</td>
<td>21</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>10.3</td>
<td>16.7</td>
<td></td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.0%</td>
<td>53.8%</td>
<td></td>
<td>44.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>7</td>
<td>8</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>5.7</td>
<td>9.3</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>29.2%</td>
<td>20.5%</td>
<td></td>
<td>22.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>4.2%</td>
<td>0.0%</td>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.6</td>
<td>12.4</td>
<td>20.6</td>
<td>31.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>33.3%</td>
<td>30.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>9</td>
<td>18</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>10.3</td>
<td>16.7</td>
<td></td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>37.5%</td>
<td>46.2%</td>
<td></td>
<td>44.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>9</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>5.7</td>
<td>9.3</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.0%</td>
<td>23.1%</td>
<td></td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>4.2%</td>
<td>0.0%</td>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>10</td>
<td>9</td>
<td>19</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.2</td>
<td>11.8</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>41.7%</td>
<td>23.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>7</td>
<td>20</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>10.3</td>
<td>16.7</td>
<td></td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>29.2%</td>
<td>51.3%</td>
<td></td>
<td>42.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>4</td>
<td>8</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>4.6</td>
<td>7.4</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>16.7%</td>
<td>20.5%</td>
<td></td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>13</td>
<td>2</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>1.9</td>
<td>3.1</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>12.5%</td>
<td>5.1%</td>
<td></td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>11</td>
<td>11</td>
<td>22</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>8.4</td>
<td>13.6</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>45.8%</td>
<td>28.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>6</td>
<td>18</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>9.1</td>
<td>14.9</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.0%</td>
<td>46.2%</td>
<td></td>
<td>38.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>9</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>5.7</td>
<td>9.3</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.0%</td>
<td>23.1%</td>
<td></td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>0.8</td>
<td>1.2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>4.2%</td>
<td>2.6%</td>
<td></td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.7</td>
<td>9.3</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>29.2%</td>
<td>20.5%</td>
<td></td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>8</td>
<td>20</td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>10.7</td>
<td>17.3</td>
<td></td>
<td>24.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>33.3%</td>
<td>51.3%</td>
<td></td>
<td>44.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>6</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>4.6</td>
<td>7.4</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.0%</td>
<td>15.4%</td>
<td></td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>3</td>
<td>5</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>3.0</td>
<td>5.0</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>12.5%</td>
<td>12.8%</td>
<td></td>
<td>12.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>9</td>
<td>20</td>
<td>29</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A14: Seaside (+R) v Coastal, 2007

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>Average rank of LSOA scores</th>
<th>District type</th>
<th>χ^2</th>
<th>ν</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MD</td>
<td>Coastal n = 24, 38%</td>
<td>Seaside (+R) n = 39, 62%</td>
<td>Total</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed % within district</td>
<td>9</td>
<td>11</td>
<td>20</td>
<td>Inv.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected % within district</td>
<td>7.6</td>
<td>12.4</td>
<td>31.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of</td>
<td></td>
<td>% within district</td>
<td>37.5%</td>
<td>28.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSOA scores</td>
<td></td>
<td>AA</td>
<td>24, 38%</td>
<td>62%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed % within district</td>
<td>11.0</td>
<td>18.0</td>
<td>46.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected % within district</td>
<td>37.5%</td>
<td>51.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA</td>
<td>20, 62%</td>
<td>62%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed % within district</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected % within district</td>
<td>5.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LD</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed % within district</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected % within district</td>
<td>0.4</td>
<td>0.6</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average rank of LSOA ranks

<table>
<thead>
<tr>
<th>Extent rank</th>
<th>MD</th>
<th>Coastal n = 24, 38%</th>
<th>Seaside (+R) n = 39, 62%</th>
<th>Total</th>
<th>63</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed % within district</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>Inv.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within district</td>
<td>7.6</td>
<td>12.4</td>
<td>31.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>33.3%</td>
<td>30.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed % within district</td>
<td>11</td>
<td>19</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within district</td>
<td>11.4</td>
<td>18.6</td>
<td>47.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>45.8%</td>
<td>48.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed % within district</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within district</td>
<td>4.6</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>16.7%</td>
<td>20.5%</td>
<td>19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed % within district</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within district</td>
<td>0.4</td>
<td>0.6</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extent rank

<table>
<thead>
<tr>
<th>Local concentration rank</th>
<th>MD</th>
<th>Coastal n = 24, 38%</th>
<th>Seaside (+R) n = 39, 62%</th>
<th>Total</th>
<th>63</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed % within district</td>
<td>11</td>
<td>14</td>
<td>25</td>
<td>Inv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected % within district</td>
<td>9.5</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td>45.8%</td>
<td>35.9%</td>
<td>39.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed % within district</td>
<td>7</td>
<td>15</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected % within district</td>
<td>8.4</td>
<td>13.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td>29.2%</td>
<td>38.5%</td>
<td>34.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed % within district</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected % within district</td>
<td>5.3</td>
<td>8.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td>20.8%</td>
<td>23.1%</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed % within district</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected % within district</td>
<td>0.8</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td>4.2%</td>
<td>2.6%</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Income rank

<table>
<thead>
<tr>
<th>MD</th>
<th>Coastal n = 24, 38%</th>
<th>Seaside (+R) n = 39, 62%</th>
<th>Total</th>
<th>63</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed % within district</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>Inv.</td>
<td></td>
</tr>
<tr>
<td>Expected % within district</td>
<td>5.7</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td>29.2%</td>
<td>20.5%</td>
<td>23.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed % within district</td>
<td>7</td>
<td>20</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Expected % within district</td>
<td>10.3</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td>29.2%</td>
<td>51.3%</td>
<td>42.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed % within district</td>
<td>8</td>
<td>5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Expected % within district</td>
<td>5.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td>33.3%</td>
<td>12.8%</td>
<td>20.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed % within district</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Expected % within district</td>
<td>3.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within district</td>
<td>8.3%</td>
<td>15.4%</td>
<td>12.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td>9</td>
<td>10.0</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.0</td>
<td>18.0</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.8</td>
<td>17.9</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td></td>
<td>5</td>
<td>4.6</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>7.4</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.9</td>
<td>17.9</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td></td>
<td>2</td>
<td>2.3</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3.7</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>9.5</td>
<td>9.5</td>
<td></td>
</tr>
</tbody>
</table>
Table A15: Seaside (+R) v Coastal, 2010

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>Coastal n = 22, 37%</th>
<th>Seaside (+R) n = 37, 63%</th>
<th>Total</th>
<th>χ^2</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>6.3</td>
<td>10.7</td>
<td>31.8%</td>
<td>27.0%</td>
<td>28.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>9</td>
<td>20</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>10.8</td>
<td>18.2</td>
<td>40.9%</td>
<td>54.1%</td>
<td>49.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.5</td>
<td>7.5</td>
<td>22.7%</td>
<td>18.9%</td>
<td>20.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>0.4</td>
<td>0.6</td>
<td>4.5%</td>
<td>0.0%</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.5</td>
<td>12.5</td>
<td>36.4%</td>
<td>32.4%</td>
<td>33.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>9</td>
<td>18</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>10.1</td>
<td>16.9</td>
<td>40.9%</td>
<td>48.6%</td>
<td>45.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.1</td>
<td>6.9</td>
<td>18.2%</td>
<td>18.9%</td>
<td>18.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>0.4</td>
<td>0.6</td>
<td>4.5%</td>
<td>0.0%</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>7</td>
<td>7</td>
<td>14</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.2</td>
<td>8.8</td>
<td>31.8%</td>
<td>18.9%</td>
<td>23.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>8</td>
<td>22</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>11.2</td>
<td>18.8</td>
<td>36.4%</td>
<td>59.5%</td>
<td>50.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.1</td>
<td>6.9</td>
<td>22.7%</td>
<td>16.2%</td>
<td>18.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>1.5</td>
<td>2.5</td>
<td>9.1%</td>
<td>5.4%</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>9</td>
<td>14</td>
<td>23</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>8.6</td>
<td>14.4</td>
<td>40.9%</td>
<td>37.8%</td>
<td>39.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6</td>
<td>15</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.8</td>
<td>13.2</td>
<td>27.3%</td>
<td>40.5%</td>
<td>35.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.5</td>
<td>7.5</td>
<td>27.3%</td>
<td>16.2%</td>
<td>20.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>1.1</td>
<td>1.9</td>
<td>4.5%</td>
<td>5.4%</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.8</td>
<td>8.2</td>
<td>27.3%</td>
<td>18.9%</td>
<td>22.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>7</td>
<td>20</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>10.1</td>
<td>16.9</td>
<td>31.8%</td>
<td>54.1%</td>
<td>45.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.1</td>
<td>6.9</td>
<td>27.3%</td>
<td>13.5%</td>
<td>18.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>3.0</td>
<td>5.0</td>
<td>13.6%</td>
<td>13.5%</td>
<td>13.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>5.2</td>
<td>31.8%</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
<td>18.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
<td>4.5</td>
<td>23.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.8%</td>
<td>18.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>7</td>
<td>7</td>
<td>10.1</td>
<td>31.8%</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.9</td>
<td>54.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>16.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.9</td>
<td>54.1%</td>
<td>45.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.8%</td>
<td>54.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>6</td>
<td>6</td>
<td>4.5</td>
<td>27.3%</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>16.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>16.2%</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.3%</td>
<td>16.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>2</td>
<td>2</td>
<td>2.2</td>
<td>9.1%</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
<td>10.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
<td>10.8%</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deprivation measure</td>
<td>Deprivation level</td>
<td>District type</td>
<td>χ^2</td>
<td>df</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------</td>
<td>----</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seaside (+R) n = 39, 65%</td>
<td>Seaside (-R) n = 21, 35%</td>
<td>Total 60</td>
<td>Cramer’s V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>10</td>
<td>2</td>
<td>12</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.8</td>
<td>4.2</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>9.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>21</td>
<td>5</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>16.9</td>
<td>9.1</td>
<td>43.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>53.8%</td>
<td>23.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>10.4</td>
<td>5.6</td>
<td>26.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>20.5%</td>
<td>38.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>3.9</td>
<td>2.1</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>0.0%</td>
<td>28.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>12</td>
<td>3</td>
<td>15</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>9.8</td>
<td>5.3</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>30.8%</td>
<td>14.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>18</td>
<td>6</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>15.6</td>
<td>8.4</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>46.2%</td>
<td>28.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>9.8</td>
<td>5.3</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>23.1%</td>
<td>28.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>3.9</td>
<td>2.1</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>0.0%</td>
<td>28.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>6.5</td>
<td>3.5</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>23.1%</td>
<td>4.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>20</td>
<td>4</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>15.6</td>
<td>8.4</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>51.3%</td>
<td>19.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>10.4</td>
<td>5.6</td>
<td>26.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>20.5%</td>
<td>38.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>6.5</td>
<td>3.5</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>5.1%</td>
<td>38.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>11</td>
<td>2</td>
<td>13</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>8.5</td>
<td>4.6</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>28.2%</td>
<td>9.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>18</td>
<td>4</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>14.3</td>
<td>7.7</td>
<td>36.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>46.2%</td>
<td>19.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>9.8</td>
<td>5.3</td>
<td>25.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>23.1%</td>
<td>28.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>6.5</td>
<td>3.5</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>2.6%</td>
<td>42.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>Inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.2</td>
<td>2.8</td>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>20.5%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>20</td>
<td>5</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>16.3</td>
<td>8.8</td>
<td>41.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>51.3%</td>
<td>23.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>9.1</td>
<td>4.9</td>
<td>23.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>15.4%</td>
<td>38.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>8.5</td>
<td>4.6</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>12.8%</td>
<td>38.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>AA</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>BA</td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>5.2</td>
<td>17.9%</td>
<td></td>
<td>20</td>
<td>15.0</td>
<td>51.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2.8</td>
<td>4.8%</td>
<td></td>
<td>3</td>
<td>8.1</td>
<td>14.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>13.3</td>
<td>13.3%</td>
<td></td>
<td>23</td>
<td>3</td>
<td>14.3%</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table A17: Seaside (+R) v Seaside (-R), 2007

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>Seaside (+R) n = 39, 65%</th>
<th>Seaside (-R) n = 21, 35%</th>
<th>Total 60</th>
<th>χ^2</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>11</td>
<td>2</td>
<td>13</td>
<td>Inv.</td>
<td>3</td>
<td>24.3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>8.5</td>
<td>4.6</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>28.2%</td>
<td>9.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>20</td>
<td>8</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>18.2</td>
<td>9.8</td>
<td>46.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>51.3%</td>
<td>38.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>8</td>
<td>6</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>9.1</td>
<td>4.9</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>20.5%</td>
<td>28.6%</td>
<td>23.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>3.3</td>
<td>1.8</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>0.0%</td>
<td>23.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>12</td>
<td>3</td>
<td>15</td>
<td>Inv.</td>
<td>3</td>
<td>24.3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>9.8</td>
<td>5.3</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>30.8%</td>
<td>14.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>19</td>
<td>7</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>16.9</td>
<td>9.1</td>
<td>33.3</td>
<td>43.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>48.7%</td>
<td>33.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>8</td>
<td>7</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>9.8</td>
<td>5.3</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>20.5%</td>
<td>33.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>2.6</td>
<td>1.4</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>0.0%</td>
<td>19.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>8</td>
<td>1</td>
<td>9</td>
<td>Inv.</td>
<td>3</td>
<td>24.3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>5.9</td>
<td>3.2</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>20.5%</td>
<td>4.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>20</td>
<td>5</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>16.3</td>
<td>8.8</td>
<td>31.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>51.3%</td>
<td>23.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>10</td>
<td>6</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>10.4</td>
<td>5.6</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>25.6%</td>
<td>28.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6.5</td>
<td>3.5</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>2.6%</td>
<td>42.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>14</td>
<td>2</td>
<td>16</td>
<td>18.6</td>
<td>3</td>
<td>0.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>10.4</td>
<td>5.6</td>
<td>26.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>35.9%</td>
<td>9.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>15</td>
<td>4</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>12.4</td>
<td>6.7</td>
<td>31.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>38.5%</td>
<td>19.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>9.8</td>
<td>5.3</td>
<td>41.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>23.1%</td>
<td>28.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6.5</td>
<td>3.5</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>2.6%</td>
<td>42.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>Inv.</td>
<td>3</td>
<td>24.3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>5.2</td>
<td>2.8</td>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>20.5%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>20</td>
<td>5</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>16.3</td>
<td>8.8</td>
<td>41.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>51.3%</td>
<td>23.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>9.4</td>
<td>4.9</td>
<td>23.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>12.8%</td>
<td>42.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>8.5</td>
<td>4.6</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within district</td>
<td>15.4%</td>
<td>33.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>AA</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
<td>BA</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
Table A18: Seaside (+R) v Seaside (-R), 2010

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>District type</th>
<th>χ^2</th>
<th>Cramer’s V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Seaside (+R) n = 37, 70%</td>
<td>Seaside (-R) n = 16, 30%</td>
<td>Total 53</td>
</tr>
<tr>
<td>Average rank of LSOA scores</td>
<td>MD</td>
<td>Observed</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.7</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>27.0%</td>
<td>6.3%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>18.2</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>54.1%</td>
<td>37.5%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>8.4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>18.9%</td>
<td>31.3%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>2.8</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>0.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td>Average rank of LSOA ranks</td>
<td>MD</td>
<td>Observed</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>9.1</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>32.4%</td>
<td>6.3%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>16.8</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>48.6%</td>
<td>37.5%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>8.4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>18.9%</td>
<td>31.3%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>2.8</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>0.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td>Extent rank</td>
<td>MD</td>
<td>Observed</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>5.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>18.9%</td>
<td>6.3%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>17.5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>59.5%</td>
<td>18.8%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>16.2%</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Local concentration rank</td>
<td>MD</td>
<td>Observed</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>11.2</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>37.8%</td>
<td>12.5%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>11.9</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>40.5%</td>
<td>12.5%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>16.2%</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Income rank</td>
<td>MD</td>
<td>Observed</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>4.9</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>18.9%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>16.1</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>54.1%</td>
<td>18.8%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>8.4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within district</td>
<td>13.5%</td>
<td>37.5%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>7.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Employment rank</td>
<td>MD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>Expected</td>
<td>% within district</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>ID2004</td>
<td>ID2007</td>
<td>ID2010</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackpool</td>
<td>24 NW</td>
<td>12 NW</td>
<td>6 NW</td>
<td></td>
</tr>
<tr>
<td>South Tyneside</td>
<td>27 NE</td>
<td>31 SE</td>
<td>19 SE</td>
<td></td>
</tr>
<tr>
<td>Hastings</td>
<td>38 SE</td>
<td>36 SW</td>
<td>49 SE</td>
<td></td>
</tr>
<tr>
<td>Wirral</td>
<td>48 NW</td>
<td>38 NE</td>
<td>52 NE</td>
<td></td>
</tr>
<tr>
<td>Penwith</td>
<td>56 SW</td>
<td>58 E</td>
<td>54 E</td>
<td></td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>70 E</td>
<td>60 NW</td>
<td>60 NW</td>
<td></td>
</tr>
<tr>
<td>Sefton</td>
<td>78 NW</td>
<td>65 SE</td>
<td>61 SW</td>
<td></td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>83 SE</td>
<td>71 SW</td>
<td>66 SE</td>
<td></td>
</tr>
<tr>
<td>Thanet</td>
<td>85 SE</td>
<td>79 SE</td>
<td>73 EM</td>
<td></td>
</tr>
<tr>
<td>Portsmouth</td>
<td>88 SE</td>
<td>83 NW</td>
<td>76 SE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AA</th>
<th>ID2004</th>
<th>ID2007</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Lindsey</td>
<td>89 EM</td>
<td>89 SW</td>
<td>84 SE</td>
</tr>
<tr>
<td>Scarborough</td>
<td>91 Y&H</td>
<td>93 SE</td>
<td>85 Y&H</td>
</tr>
<tr>
<td>Restormel</td>
<td>93 SW</td>
<td>97 Y&H</td>
<td>86 E</td>
</tr>
<tr>
<td>Torbay</td>
<td>94 SW</td>
<td>103 E</td>
<td>90 SW</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>95 SW</td>
<td>104 SE</td>
<td>92 NW</td>
</tr>
<tr>
<td>Tendring</td>
<td>103 E</td>
<td>106 SW</td>
<td>94 SW</td>
</tr>
<tr>
<td>Lancaster</td>
<td>107 NW</td>
<td>108 SW</td>
<td>97 SE</td>
</tr>
<tr>
<td>West Somerset</td>
<td>110 SW</td>
<td>111 E</td>
<td>102 SW</td>
</tr>
<tr>
<td>Waveney</td>
<td>113 E</td>
<td>114 E</td>
<td>106 E</td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>114 E</td>
<td>117 NW</td>
<td>110 SW</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>117 SE</td>
<td>120 SW</td>
<td>115 E</td>
</tr>
<tr>
<td>Berwick-upon-Tweed</td>
<td>124 NE</td>
<td>123 SE</td>
<td>116 NW</td>
</tr>
<tr>
<td>Weymouth & Port.</td>
<td>125 SW</td>
<td>127 SW</td>
<td>Isle of Wight</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>126 SE</td>
<td>133 NE</td>
<td>127 SE</td>
</tr>
<tr>
<td>Shepway</td>
<td>131 SE</td>
<td>134 SE</td>
<td>135 NE</td>
</tr>
<tr>
<td>North Devon</td>
<td>133 SW</td>
<td>146 SW</td>
<td>137 SW</td>
</tr>
<tr>
<td>Carrick</td>
<td>149 SW</td>
<td>153 SE</td>
<td>139 SE</td>
</tr>
<tr>
<td>Dover</td>
<td>154 SE</td>
<td>166 SE</td>
<td>152 SW</td>
</tr>
<tr>
<td>Wyre</td>
<td>161 NW</td>
<td>169 SW</td>
<td>154 SE</td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>169 SW</td>
<td>170 NW</td>
<td>163 NW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BA</th>
<th>ID2004</th>
<th>ID2007</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canterbury</td>
<td>190 SE</td>
<td>179 SW</td>
<td>166 SE</td>
</tr>
<tr>
<td>Rother</td>
<td>191 SE</td>
<td>187 SE</td>
<td>184 SW</td>
</tr>
<tr>
<td>Arun</td>
<td>205 SE</td>
<td>198 SE</td>
<td>201 SW</td>
</tr>
<tr>
<td>North Somerset</td>
<td>228 SW</td>
<td>215 SW</td>
<td>East Devon</td>
</tr>
<tr>
<td>Fylde</td>
<td>240 NW</td>
<td>220 SW</td>
<td>Purbeck</td>
</tr>
<tr>
<td>East Devon</td>
<td>246 SW</td>
<td>238 SW</td>
<td>230 SW</td>
</tr>
<tr>
<td>Christchurch</td>
<td>247 SW</td>
<td>241 SW</td>
<td>236 NW</td>
</tr>
<tr>
<td>Purbeck</td>
<td>248 SW</td>
<td>251 NW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LD</th>
<th>ID2004</th>
<th>ID2007</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

374
Table A20: Average rank of LSOA ranks

<table>
<thead>
<tr>
<th>MD</th>
<th>ID2004</th>
<th>ID2007</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackpool</td>
<td>26 NW</td>
<td>18 NW</td>
<td>10 NW</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>28 NE</td>
<td>21 SW</td>
<td>23 SE</td>
</tr>
<tr>
<td>Penwith</td>
<td>34 SW</td>
<td>29 SE</td>
<td>45 SW</td>
</tr>
<tr>
<td>Hastings</td>
<td>39 SE</td>
<td>37 NE</td>
<td>47 NE</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>71 E</td>
<td>55 E</td>
<td>49 SW</td>
</tr>
<tr>
<td>Restormel</td>
<td>72 SW</td>
<td>57 SW</td>
<td>50 SE</td>
</tr>
<tr>
<td>Blackpool</td>
<td>26 NW</td>
<td>57 SW</td>
<td>58 SE</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>37 NE</td>
<td>62 SE</td>
<td></td>
</tr>
<tr>
<td>Hastings</td>
<td>39 SE</td>
<td>65 SE</td>
<td>47 NE</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>71 E</td>
<td>60 SE</td>
<td>76 SE</td>
</tr>
<tr>
<td>east Lindsey</td>
<td>78 SW</td>
<td>77 SE</td>
<td>68 SE</td>
</tr>
<tr>
<td>Hastings</td>
<td>79 SW</td>
<td>82 EM</td>
<td>76 SE</td>
</tr>
<tr>
<td>thanet</td>
<td>83 SE</td>
<td>88 SE</td>
<td></td>
</tr>
<tr>
<td>Portsmouth</td>
<td>88 SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torbay</td>
<td>89 SW</td>
<td>91 E</td>
<td>81 E</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>96 SW</td>
<td>92 SE</td>
<td>83 Y&H</td>
</tr>
<tr>
<td>Tendring</td>
<td>98 E</td>
<td>95 NW</td>
<td>88 SW</td>
</tr>
<tr>
<td>Sefton</td>
<td>99 NW</td>
<td>100 SW</td>
<td>89 SE</td>
</tr>
<tr>
<td>Berwick upon Tweed</td>
<td>100 NE</td>
<td>103 Y&H Bournemouth</td>
<td>96 SW</td>
</tr>
<tr>
<td>scarborough</td>
<td>102 Y&H Berwick upon Tweed</td>
<td>104 NE Wirral</td>
<td>103 NW</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>108 SE Sefton</td>
<td>107 NW Isle of Wight</td>
<td>106 SE</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>113 SE</td>
<td>108 SW</td>
<td>112 E</td>
</tr>
<tr>
<td>Waveney</td>
<td>118 E</td>
<td>110 SE</td>
<td>114 NW</td>
</tr>
<tr>
<td>Weymouth and Port.</td>
<td>119 SW Waveney</td>
<td>116 E Southend-on-Sea</td>
<td>117 E</td>
</tr>
<tr>
<td>North Devon</td>
<td>120 SW Southend-on-Sea</td>
<td>124 E Dover</td>
<td>122 SE</td>
</tr>
<tr>
<td>Shepway</td>
<td>124 SE Shepway</td>
<td>126 SE North Devon</td>
<td>126 NW</td>
</tr>
<tr>
<td>Lancaster</td>
<td>129 NW Weymouth & Port.</td>
<td>130 SW Rother</td>
<td>132 SE</td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>130 E North Devon</td>
<td>133 SW Lancaster</td>
<td>133 NW</td>
</tr>
<tr>
<td>Carrick</td>
<td>132 SW Lancaster</td>
<td>135 NW Northumberland</td>
<td>144 NE</td>
</tr>
<tr>
<td>Dover</td>
<td>141 SE Dover</td>
<td>148 SE Arun</td>
<td>151 SE</td>
</tr>
<tr>
<td>Teignbridge</td>
<td>163 SW Rother</td>
<td>163 SE Sedgemoor</td>
<td>154 SW</td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>172 SW Teignbridge</td>
<td>165 SW Canterbury</td>
<td>163 SE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyre</td>
<td>179 NW Wyre</td>
<td>182 NW Teignbridge</td>
<td>175 SW</td>
</tr>
<tr>
<td>Rother</td>
<td>181 SE Arun</td>
<td>186 SE Wyre</td>
<td>185 NW</td>
</tr>
<tr>
<td>Canterbury</td>
<td>188 SE Canterbury</td>
<td>187 SE Purbeck</td>
<td>199 SW</td>
</tr>
<tr>
<td>Arun</td>
<td>203 SE Christchurch</td>
<td>216 SW East Devon</td>
<td>209 NW</td>
</tr>
<tr>
<td>Purbeck</td>
<td>236 SW Purbeck</td>
<td>222 SW North Somerset</td>
<td>224 SW</td>
</tr>
<tr>
<td>Fylde</td>
<td>240 NW East Devon</td>
<td>228 SW Christchurch</td>
<td>228 SW</td>
</tr>
<tr>
<td>East Devon</td>
<td>242 SW North Somerset</td>
<td>242 SW Fylde</td>
<td>235 NW</td>
</tr>
<tr>
<td>North Somerset</td>
<td>244 SW Fylde</td>
<td>249 NW</td>
<td></td>
</tr>
<tr>
<td>Christchurch</td>
<td>249 SW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LD
Table A21: Extent rank

<table>
<thead>
<tr>
<th>MD</th>
<th>ID2004</th>
<th>ID2007</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Tyneside</td>
<td>20 NE</td>
<td>24 NW</td>
<td>Blackpool 16 NW</td>
</tr>
<tr>
<td>Blackpool</td>
<td>35 NW</td>
<td>South Tyneside 29 NE</td>
<td>Hastings 24 SE</td>
</tr>
<tr>
<td>Hastings</td>
<td>38 SE</td>
<td>Hastings 38 SE</td>
<td>South Tyneside 39 NE</td>
</tr>
<tr>
<td>Wirral</td>
<td>49 NW</td>
<td>Penwith 53 SW</td>
<td>Wirral 54 NW</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>72 E</td>
<td>Wirral 59 NW</td>
<td>Thanet 57 SE</td>
</tr>
<tr>
<td>Sefton</td>
<td>78 NW</td>
<td>Great Yarmouth 66 E</td>
<td>Great Yarmouth 64 E</td>
</tr>
<tr>
<td>Penwith</td>
<td>81 SW</td>
<td>Thanet 71 SE</td>
<td>Sefton 80 NW</td>
</tr>
<tr>
<td>Thanet</td>
<td>84 SE</td>
<td>Sefton 80 NW</td>
<td></td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>87 SE</td>
<td>Torbay 89 SW</td>
<td>Torbay 82 SW</td>
</tr>
<tr>
<td>Scarborough</td>
<td>89 Y&H</td>
<td>Torbay 89 SW</td>
<td>Torbay 82 SW</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>90 SE</td>
<td>Brighton and Hove 95 SE</td>
<td>Brighton and Hove 84 SE</td>
</tr>
<tr>
<td>East Lindsey</td>
<td>91 EM</td>
<td>Scarborough 101 Y&H</td>
<td>Weymouth & Port. 90 SW</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>101 SW</td>
<td>East Lindsey 103 EM</td>
<td>East Lindsey 91 EM</td>
</tr>
<tr>
<td>Lancaster</td>
<td>104 NW</td>
<td>Portsmouth 105 SE</td>
<td>Portsmouth 93 SE</td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>111 E</td>
<td>Southend-on-Sea 107 E</td>
<td>Southend-on-Sea 97 E</td>
</tr>
<tr>
<td>Torbay</td>
<td>113 SW</td>
<td>Lancaster 109 NW</td>
<td>Scarborough 99 Y&H</td>
</tr>
<tr>
<td>Waveney</td>
<td>122 E</td>
<td>Bournemouth 111 SW</td>
<td>Eastbourne 101 SE</td>
</tr>
<tr>
<td>Weymouth & Port.</td>
<td>126 SW</td>
<td>Weymouth & Port. 115 SW</td>
<td>Lancaster 104 NW</td>
</tr>
<tr>
<td>Tendring</td>
<td>127 E</td>
<td>Waveney 118 E</td>
<td>Bournemouth 105 SW</td>
</tr>
<tr>
<td>Wyre</td>
<td>134 NW</td>
<td>Eastbourne 121 SE</td>
<td>Tendring 112 E</td>
</tr>
<tr>
<td>Restormel</td>
<td>137 SW</td>
<td>Tendring 126 E</td>
<td>Shepway 120 SE</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>142 SE</td>
<td>Restormel 135 SW</td>
<td>Waveney 123 E</td>
</tr>
<tr>
<td>Shepway</td>
<td>143 SE</td>
<td>Wyre 139 NW</td>
<td>Northumberland 124 NE</td>
</tr>
<tr>
<td>North Devon</td>
<td>148 SW</td>
<td>Shepway 140 SE</td>
<td>Dover 131 SE</td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>163 SW</td>
<td>Sedgemoor 160 SW</td>
<td>Lyd 135 NW</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>165 SE</td>
<td>Isle of Wight 178 SE</td>
<td>Isle of Wight 165 SE</td>
</tr>
<tr>
<td>North Somerset</td>
<td>167 SW</td>
<td>North Devon 164 SW</td>
<td>Sedgemoor 148 SW</td>
</tr>
<tr>
<td>Dover</td>
<td>168 SE</td>
<td>Dover 166 SE</td>
<td>Rother 153 SE</td>
</tr>
<tr>
<td>Carrick</td>
<td>174 SW</td>
<td>North Somerset 167 SW</td>
<td>Cornwall 154 SW</td>
</tr>
<tr>
<td>Canterbury</td>
<td>187 SE</td>
<td>Isle of Wight 178 SE</td>
<td>Isle of Wight 165 SE</td>
</tr>
<tr>
<td>Arun</td>
<td>189 SE</td>
<td>Arun 181 SE</td>
<td>Canterbury 170 SE</td>
</tr>
<tr>
<td>Rother</td>
<td>194 SE</td>
<td>Rother 184 SE</td>
<td>West Somerset 173 SW</td>
</tr>
<tr>
<td>Teignbridge</td>
<td>198 SW</td>
<td>West Somerset 191 SW</td>
<td>Teignbridge 192 SW</td>
</tr>
<tr>
<td>West Somerset</td>
<td>212 SW</td>
<td>Canterbury 197 SE</td>
<td>Christchurch 197 SW</td>
</tr>
<tr>
<td>Berwick-upon-Tweed</td>
<td>221 NE</td>
<td>Teignbridge 200 SW</td>
<td>Fylde 218 NW</td>
</tr>
<tr>
<td>Christchurch</td>
<td>223 SW</td>
<td>Christchurch 201 SW</td>
<td></td>
</tr>
<tr>
<td>Fylde</td>
<td>236 NW</td>
<td>Fylde 227 NW</td>
<td>Berwick-upon-Tweed 232 NE</td>
</tr>
<tr>
<td>East Devon</td>
<td>266 SW</td>
<td>East Devon 250 SW</td>
<td></td>
</tr>
<tr>
<td>Purbeck</td>
<td>268 SW</td>
<td>Purbeck 309 SW</td>
<td>East Devon 250 SW</td>
</tr>
<tr>
<td>Purbeck</td>
<td>298 SW</td>
<td>Purbeck 294 SW</td>
<td></td>
</tr>
</tbody>
</table>

376
Table A22: Local concentration rank

<table>
<thead>
<tr>
<th>ID2004</th>
<th>ID2007</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirral</td>
<td>8 NW</td>
<td>Blackpool</td>
</tr>
<tr>
<td>Blackpool</td>
<td>10 NW</td>
<td>Wirral</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>35 E</td>
<td>Hastings</td>
</tr>
<tr>
<td>Hastings</td>
<td>39 SE</td>
<td>Great Yarmouth</td>
</tr>
<tr>
<td>Sefton</td>
<td>42 NW</td>
<td>Thanet</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>58 NE</td>
<td>Sefton</td>
</tr>
<tr>
<td>Lancaster</td>
<td>62 NW</td>
<td>Lancaster</td>
</tr>
<tr>
<td>Thanet</td>
<td>63 SE</td>
<td>South Tyneside</td>
</tr>
<tr>
<td>Scarborough</td>
<td>67 Y&H</td>
<td>Portsmouth</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>69 SE</td>
<td>Scarborough</td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>74 SE</td>
<td>Brighton and Hove</td>
</tr>
<tr>
<td>Torbay</td>
<td>75 SW</td>
<td>Southend-on-Sea</td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>83 E</td>
<td>Tendring</td>
</tr>
<tr>
<td>Waveney</td>
<td>86 E</td>
<td>South Tyneside</td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penwith</td>
<td>89 SW</td>
<td>Bournemouth</td>
</tr>
<tr>
<td>Waveney</td>
<td>92 E</td>
<td>Penwith</td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>97 E</td>
<td>East Lindsey</td>
</tr>
<tr>
<td>East Lindsey</td>
<td>101 EM</td>
<td>Tendring</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>103 SW</td>
<td>Wyre</td>
</tr>
<tr>
<td>Tendring</td>
<td>111 E</td>
<td>North Somerset</td>
</tr>
<tr>
<td>Wyre</td>
<td>117 NW</td>
<td>Weymouth & Port.</td>
</tr>
<tr>
<td>Torbay</td>
<td>119 SW</td>
<td>Shepway</td>
</tr>
<tr>
<td>Shepway</td>
<td>127 SE</td>
<td>Eastbourne</td>
</tr>
<tr>
<td>North Somerset</td>
<td>132 SW</td>
<td>North Devon</td>
</tr>
<tr>
<td>Weymouth & Port.</td>
<td>139 SW</td>
<td>Restormel</td>
</tr>
<tr>
<td>North Devon</td>
<td>140 SW</td>
<td>Carrick</td>
</tr>
<tr>
<td>Restormel</td>
<td>144 SW</td>
<td>Sedgemoor</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>150 SE</td>
<td>Dover</td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>165 SW</td>
<td>Arun</td>
</tr>
<tr>
<td>Dover</td>
<td>171 SE</td>
<td></td>
</tr>
<tr>
<td>Carrick</td>
<td>172 SW</td>
<td></td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>175 SE</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arun</td>
<td>185 SE</td>
<td>Rother</td>
</tr>
<tr>
<td>Canterbury</td>
<td>190 SE</td>
<td>Isle of Wight</td>
</tr>
<tr>
<td>Rother</td>
<td>193 SE</td>
<td>Teignbridge</td>
</tr>
<tr>
<td>Teignbridge</td>
<td>199 SW</td>
<td>Canterbury</td>
</tr>
<tr>
<td>West Somerset</td>
<td>216 SW</td>
<td>Christchurch</td>
</tr>
<tr>
<td>Berwick-upon-Tweed</td>
<td>217 NW</td>
<td>West Somerset</td>
</tr>
<tr>
<td>Christchurch</td>
<td>233 SW</td>
<td>Berwick-upon-Tweed</td>
</tr>
<tr>
<td>Fylde</td>
<td>235 NW</td>
<td>Fylde</td>
</tr>
<tr>
<td>East Devon</td>
<td>259 SW</td>
<td>East Devon</td>
</tr>
<tr>
<td>LD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purbeck</td>
<td>322 SW</td>
<td>Purbeck</td>
</tr>
<tr>
<td>Purbeck</td>
<td>322 SW</td>
<td>Purbeck</td>
</tr>
</tbody>
</table>

377
Table A23: Income rank

<table>
<thead>
<tr>
<th>MD</th>
<th>ID2004</th>
<th>ID2007</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirral</td>
<td>13 NW</td>
<td>Wirral</td>
<td>21 NW</td>
</tr>
<tr>
<td>Sefton</td>
<td>33 NW</td>
<td>Sefton</td>
<td>21 NW</td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>50 SE</td>
<td>Brighton and Hove</td>
<td>51 SE</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>56 NE</td>
<td>South Tyneside</td>
<td>68 NE</td>
</tr>
<tr>
<td>Blackpool</td>
<td>73 NW</td>
<td>Blackpool</td>
<td>72 NW</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>76 SE</td>
<td>Portsmouth</td>
<td>77 SE</td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>79 E</td>
<td>Southend-on-Sea</td>
<td>81 E</td>
</tr>
<tr>
<td>Thanet</td>
<td>88 SE</td>
<td>Thanet</td>
<td>88 SE</td>
</tr>
<tr>
<td>Birkenhead</td>
<td>91 SW</td>
<td>Birkenhead</td>
<td>91 SW</td>
</tr>
<tr>
<td>Torbay</td>
<td>95 SW</td>
<td>Torbay</td>
<td>93 SW</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>101 SE</td>
<td>Isle of Wight</td>
<td>101 SW</td>
</tr>
<tr>
<td>Lancaster</td>
<td>102 NW</td>
<td>Lancaster</td>
<td>104 SW</td>
</tr>
<tr>
<td>Tendring</td>
<td>103 E</td>
<td>Tendring</td>
<td>105 SE</td>
</tr>
<tr>
<td>Hastings</td>
<td>107 SE</td>
<td>Hastings</td>
<td>107 NW</td>
</tr>
<tr>
<td>North Somerset</td>
<td>109 SW</td>
<td>North Somerset</td>
<td>110 SE</td>
</tr>
<tr>
<td>East Lindsey</td>
<td>111 EM</td>
<td>East Lindsey</td>
<td>112 E</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>117 E</td>
<td>Great Yarmouth</td>
<td>119 E</td>
</tr>
<tr>
<td>Waveney</td>
<td>118 E</td>
<td>Waveney</td>
<td>120 E</td>
</tr>
<tr>
<td>Scarborough</td>
<td>123 Y&H</td>
<td>Scarborough</td>
<td>125 SE</td>
</tr>
<tr>
<td>Canterbury</td>
<td>129 SE</td>
<td>Canterbury</td>
<td>131 SE</td>
</tr>
<tr>
<td>Shepway</td>
<td>140 SE</td>
<td>Shepway</td>
<td>147 SE</td>
</tr>
<tr>
<td>Dover</td>
<td>141 SE</td>
<td>Dover</td>
<td>151 SE</td>
</tr>
<tr>
<td>Arun</td>
<td>143 SE</td>
<td>Arun</td>
<td>151 SE</td>
</tr>
<tr>
<td>Restormel</td>
<td>150 SW</td>
<td>Restormel</td>
<td>152 SW</td>
</tr>
<tr>
<td>Teignbridge</td>
<td>157 SW</td>
<td>Teignbridge</td>
<td>153 SW</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>168 SE</td>
<td>Eastbourne</td>
<td>158 SE</td>
</tr>
<tr>
<td>Weyre</td>
<td>170 NW</td>
<td>Weyre</td>
<td>167 NW</td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>171 SW</td>
<td>Sedgemoor</td>
<td>165 SW</td>
</tr>
<tr>
<td>BA Penwith</td>
<td>178 SW</td>
<td>North Devon</td>
<td>181 SW</td>
</tr>
<tr>
<td>North Devon</td>
<td>179 SW</td>
<td>East Devon</td>
<td>185 SW</td>
</tr>
<tr>
<td>Carrick</td>
<td>181 SW</td>
<td>Penwith</td>
<td>198 SW</td>
</tr>
<tr>
<td>East Devon</td>
<td>196 SW</td>
<td>Carrick</td>
<td>199 SW</td>
</tr>
<tr>
<td>Rother</td>
<td>225 SE</td>
<td>Rother</td>
<td>219 SE</td>
</tr>
<tr>
<td>Weymouth & Port.</td>
<td>253 SW</td>
<td>Weymouth & Port.</td>
<td>269 SW</td>
</tr>
<tr>
<td>LD Fylde</td>
<td>288 NW</td>
<td>Fylde</td>
<td>296 NW</td>
</tr>
<tr>
<td>West Somerset</td>
<td>331 SW</td>
<td>Christchurch</td>
<td>329 NW</td>
</tr>
<tr>
<td>Christchurch</td>
<td>332 SW</td>
<td>West Somerset</td>
<td>330 SW</td>
</tr>
<tr>
<td>Purbeck</td>
<td>340 SW</td>
<td>Purbeck</td>
<td>341 SW</td>
</tr>
<tr>
<td>Berwick-upon-Tweed</td>
<td>347 NE</td>
<td>Berwick-upon-Tweed</td>
<td>348 NE</td>
</tr>
<tr>
<td>MD</td>
<td>ID2004</td>
<td>ID2007</td>
<td>ID2010</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Wirral</td>
<td>8 NW</td>
<td>8 NW</td>
<td>Cornwall 8 SW</td>
</tr>
<tr>
<td>Sefton</td>
<td>15 NW</td>
<td>23 NW</td>
<td>Wirral 10 NW</td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>43 SE</td>
<td>46 SE</td>
<td>South Tyneside 29 NE</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>48 NE</td>
<td>55 NE</td>
<td>Wirral 10 NW</td>
</tr>
<tr>
<td>Blackpool</td>
<td>59 NW</td>
<td>61 NW</td>
<td>Blackpool 48 SE</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>81 SW</td>
<td>81 SW</td>
<td>South Tyneside 62 NE</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>83 SE</td>
<td>82 SE</td>
<td>Blackpool 63 NW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AA</th>
<th>ID2004</th>
<th>ID2007</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southend-on-Sea</td>
<td>89 E</td>
<td>93 SE</td>
<td>Portsmouth 88 SE</td>
</tr>
<tr>
<td>Thanet</td>
<td>90 SE</td>
<td>94 SW</td>
<td>Southend-on-Sea 92 E</td>
</tr>
<tr>
<td>Lancaster</td>
<td>93 NW</td>
<td>97 EM</td>
<td>Bournemouth 93 SW</td>
</tr>
<tr>
<td>Torbay</td>
<td>94 SW</td>
<td>98 SW</td>
<td>North Somerset 98 SW</td>
</tr>
<tr>
<td>East Lindsey</td>
<td>98 EM</td>
<td>103 NW</td>
<td>Torbay 99 SW</td>
</tr>
<tr>
<td>North Somerset</td>
<td>106 SW</td>
<td>104 E</td>
<td>Thanet 101 SE</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>108 SE</td>
<td>110 SE</td>
<td>East Lindsey 104 EM</td>
</tr>
<tr>
<td>Tendring</td>
<td>109 E</td>
<td>116 E</td>
<td>Tendring 107 E</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>117 E</td>
<td>121 E</td>
<td>Lancaster 113 NW</td>
</tr>
<tr>
<td>Waveney</td>
<td>124 E</td>
<td>129 Y&H</td>
<td>Hastings 126 SE</td>
</tr>
<tr>
<td>Hastings</td>
<td>126 SE</td>
<td>141 SE</td>
<td>Great Yarmouth 127 E</td>
</tr>
<tr>
<td>Canterbury</td>
<td>147 SE</td>
<td>144 SE</td>
<td>Waveney 134 E</td>
</tr>
<tr>
<td>Dover</td>
<td>148 SE</td>
<td>145 SE</td>
<td>Scarborough 135 Y&H</td>
</tr>
<tr>
<td>We...</td>
<td>151 NW</td>
<td>153 SE</td>
<td>Arun 145 SE</td>
</tr>
<tr>
<td>Restormel</td>
<td>154 SW</td>
<td>154 SW</td>
<td>Canterbury 146 SE</td>
</tr>
<tr>
<td>Shepway</td>
<td>158 SE</td>
<td>157 NW</td>
<td>Shepway 154 SE</td>
</tr>
<tr>
<td>Teignbridge</td>
<td>170 SW</td>
<td>173 SW</td>
<td>Dover 157 SE</td>
</tr>
<tr>
<td>Arun</td>
<td>171 SE</td>
<td>174 SW</td>
<td>Wyre 162 NW</td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>176 SW</td>
<td>176 SE</td>
<td>Eastbourne 163 SE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BA</th>
<th>ID2004</th>
<th>ID2007</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penwith</td>
<td>182 SW</td>
<td>198 SW</td>
<td>Sedgemoor 167 SW</td>
</tr>
<tr>
<td>North Devon</td>
<td>183 SW</td>
<td>202 SW</td>
<td>Teignbridge 171 SW</td>
</tr>
<tr>
<td>Carrick</td>
<td>186 SW</td>
<td>205 SW</td>
<td>East Devon 204 SW</td>
</tr>
<tr>
<td>East Devon</td>
<td>193 SW</td>
<td>209 SW</td>
<td>North Devon 205 SW</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>194 SE</td>
<td>230 SW</td>
<td>Rother 218 SE</td>
</tr>
<tr>
<td>Weymouth & Port.</td>
<td>230 SW</td>
<td>239 SE</td>
<td>Weymouth & Port. 219 SW</td>
</tr>
<tr>
<td>Fylde</td>
<td>241 NW</td>
<td>260 NW</td>
<td>Rother 219 SW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LD</th>
<th>ID2004</th>
<th>ID2007</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>West...</td>
<td>332 SW</td>
<td>335 SW</td>
<td>Fylde 253 NW</td>
</tr>
<tr>
<td>Christchurch</td>
<td>340 SW</td>
<td>337 SW</td>
<td>West Somerset 313 SW</td>
</tr>
<tr>
<td>Berwick-upon-Tweed</td>
<td>342 NE</td>
<td>347 NE</td>
<td>Christchurch 315 SW</td>
</tr>
<tr>
<td>Purbeck</td>
<td>344 SW</td>
<td>348 SW</td>
<td>Purbeck 322 SW</td>
</tr>
</tbody>
</table>
Table A25: Seaside (+R) v Inland – Overall Index of M.D.

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ²</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of IMD score, 2004</td>
<td>MD</td>
<td>Observed 6728</td>
<td>738</td>
<td>7466</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6662.6</td>
<td>803.4</td>
<td>25.6</td>
<td>393.6</td>
<td>0.116</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 25.80%</td>
<td>23.50%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 6140</td>
<td>1066</td>
<td>7206</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6430.6</td>
<td>775.4</td>
<td>24.7</td>
<td>368.2</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 23.60%</td>
<td>33.90%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 6207</td>
<td>941</td>
<td>7148</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6378.8</td>
<td>769.2</td>
<td>24.5</td>
<td>368.2</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 23.80%</td>
<td>30.00%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 6973</td>
<td>396</td>
<td>7369</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6576</td>
<td>793</td>
<td>25.2</td>
<td>368.2</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 26.80%</td>
<td>12.60%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2007</td>
<td>MD</td>
<td>Observed 6711</td>
<td>750</td>
<td>7461</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6658.1</td>
<td>802.9</td>
<td>25.6</td>
<td>368.2</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 25.80%</td>
<td>23.90%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 6084</td>
<td>1085</td>
<td>7169</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6397.6</td>
<td>771.4</td>
<td>24.6</td>
<td>368.2</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 23.40%</td>
<td>34.50%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 6281</td>
<td>889</td>
<td>7170</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6398.4</td>
<td>771.6</td>
<td>24.6</td>
<td>368.2</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 24.10%</td>
<td>28.30%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 6972</td>
<td>417</td>
<td>7389</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6593.9</td>
<td>795.1</td>
<td>25.3</td>
<td>368.2</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 26.80%</td>
<td>13.30%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2010</td>
<td>MD</td>
<td>Observed 6684</td>
<td>769</td>
<td>7453</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6651</td>
<td>802</td>
<td>25.5</td>
<td>288.6</td>
<td>0.099</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 25.70%</td>
<td>24.50%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 6147</td>
<td>1024</td>
<td>7171</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6399.3</td>
<td>771.7</td>
<td>24.6</td>
<td>368.2</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 23.60%</td>
<td>32.60%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 6296</td>
<td>903</td>
<td>7199</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6424.3</td>
<td>744.7</td>
<td>24.7</td>
<td>368.2</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 24.20%</td>
<td>28.70%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 6921</td>
<td>445</td>
<td>7366</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected 6573.4</td>
<td>792.6</td>
<td>25.2</td>
<td>368.2</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t. 26.60%</td>
<td>14.20%</td>
<td>0.116</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A26: Seaside (+R) v Inland – Income

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ^2, Cramer’s V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland n = 26,048</td>
<td>Seaside (+R) n = 3,141</td>
</tr>
<tr>
<td>Rank of Income score, 2004</td>
<td>MD</td>
<td>Observed 6715</td>
<td>Expected 6665.3</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 6135</td>
<td>Expected 6419.9</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 6208</td>
<td>Expected 6376.1</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 6990</td>
<td>Expected 6586.7</td>
</tr>
<tr>
<td>Rank of Income score, 2007</td>
<td>MD</td>
<td>Observed 6765</td>
<td>Expected 6672.4</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 6118</td>
<td>Expected 6414.5</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 6179</td>
<td>Expected 6369</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 6986</td>
<td>Expected 6592.1</td>
</tr>
<tr>
<td>Rank of Income score, 2010</td>
<td>MD</td>
<td>Observed 6740</td>
<td>Expected 6676.9</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 6173</td>
<td>Expected 6435.9</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 6184</td>
<td>Expected 6368.1</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 6951</td>
<td>Expected 6567.1</td>
</tr>
</tbody>
</table>
Table A27: Seaside (+R) v Inland – Employment

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>(\chi^2)</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland n = 26,048</td>
<td>Seaside (+R) n = 3,141</td>
<td>Total n = 29,189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Employment score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>6395</td>
<td>904</td>
<td>7299</td>
<td>693.1</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6513.6</td>
<td>785.4</td>
<td>24.60%</td>
<td>28.80%</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>23.30%</td>
<td>37.00%</td>
<td>24.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6057</td>
<td>1162</td>
<td>7219</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6442.2</td>
<td>776.8</td>
<td>23.30%</td>
<td>37.00%</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>23.30%</td>
<td>37.00%</td>
<td>24.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6334</td>
<td>839</td>
<td>7173</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6401.1</td>
<td>771.9</td>
<td>24.30%</td>
<td>26.70%</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>24.30%</td>
<td>26.70%</td>
<td>24.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>7262</td>
<td>236</td>
<td>7498</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6691.1</td>
<td>806.9</td>
<td>27.90%</td>
<td>7.50%</td>
<td>25.7</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>27.90%</td>
<td>7.50%</td>
<td>25.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Employment score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>6342</td>
<td>890</td>
<td>7322</td>
<td>538.9</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6534.1</td>
<td>778.9</td>
<td>24.70%</td>
<td>28.30%</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>24.70%</td>
<td>28.30%</td>
<td>25.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6136</td>
<td>1088</td>
<td>7224</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6446.6</td>
<td>777.4</td>
<td>23.60%</td>
<td>34.60%</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>23.60%</td>
<td>34.60%</td>
<td>24.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6296</td>
<td>874</td>
<td>7170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6398.4</td>
<td>771.6</td>
<td>24.20%</td>
<td>27.80%</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>24.20%</td>
<td>27.80%</td>
<td>24.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>7184</td>
<td>289</td>
<td>7473</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6668.8</td>
<td>804.2</td>
<td>27.60%</td>
<td>9.20%</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>27.60%</td>
<td>9.20%</td>
<td>25.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Employment score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>6398</td>
<td>935</td>
<td>7333</td>
<td>485.2</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6543.9</td>
<td>789.1</td>
<td>24.60%</td>
<td>29.80%</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>24.60%</td>
<td>29.80%</td>
<td>25.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6206</td>
<td>1010</td>
<td>7216</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6439.5</td>
<td>776.5</td>
<td>23.80%</td>
<td>32.20%</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>23.80%</td>
<td>32.20%</td>
<td>24.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6274</td>
<td>896</td>
<td>7170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6398.4</td>
<td>771.6</td>
<td>24.10%</td>
<td>28.50%</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>24.10%</td>
<td>28.50%</td>
<td>24.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>7170</td>
<td>300</td>
<td>7470</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6666.2</td>
<td>803.8</td>
<td>27.50%</td>
<td>9.60%</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t,</td>
<td>27.50%</td>
<td>9.60%</td>
<td>25.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A28: Seaside (+R) v Inland – Health

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ^2</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland</td>
<td>Seaside (+R)</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n = 26,048</td>
<td>n = 3,141</td>
<td>29,189</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Health</td>
<td>MD</td>
<td>Observed</td>
<td>6637</td>
<td>7320</td>
<td>7387</td>
<td>3</td>
</tr>
<tr>
<td>score, 2004</td>
<td>Expected</td>
<td>6592.1</td>
<td>794.9</td>
<td>0.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.50%</td>
<td>23.90%</td>
<td>25.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6199</td>
<td>7141</td>
<td>7320</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6532.3</td>
<td>787.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.80%</td>
<td>35.70%</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6117</td>
<td>7461</td>
<td>7320</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6372.6</td>
<td>768.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.50%</td>
<td>32.60%</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>7095</td>
<td>7341</td>
<td>7320</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6551</td>
<td>790</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.20%</td>
<td>7.80%</td>
<td>25.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Health</td>
<td>MD</td>
<td>Observed</td>
<td>6588</td>
<td>7391</td>
<td>7387</td>
<td>3</td>
</tr>
<tr>
<td>score, 2007</td>
<td>Expected</td>
<td>6595.7</td>
<td>795.3</td>
<td>0.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.30%</td>
<td>25.60%</td>
<td>25.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6215</td>
<td>7327</td>
<td>7320</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6538.5</td>
<td>788.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.90%</td>
<td>35.40%</td>
<td>25.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6168</td>
<td>7121</td>
<td>7320</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6354.7</td>
<td>766.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.70%</td>
<td>30.30%</td>
<td>24.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>7077</td>
<td>7350</td>
<td>7320</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6551.1</td>
<td>790.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.20%</td>
<td>8.70%</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Health</td>
<td>MD</td>
<td>Observed</td>
<td>6480</td>
<td>7352</td>
<td>7387</td>
<td>3</td>
</tr>
<tr>
<td>score, 2010</td>
<td>Expected</td>
<td>6560.9</td>
<td>791.1</td>
<td>0.137</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>24.90%</td>
<td>27.80%</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6202</td>
<td>7277</td>
<td>7320</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6493.9</td>
<td>783.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.80%</td>
<td>34.20%</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6228</td>
<td>7147</td>
<td>7320</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6377.9</td>
<td>769.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.90%</td>
<td>29.30%</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>7138</td>
<td>7413</td>
<td>7320</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6615.3</td>
<td>797.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.40%</td>
<td>8.80%</td>
<td>25.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A29: Seaside (+R) v Inland – Education

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ², Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland n = 26,048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>89.2 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Education score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>6547</td>
<td>707</td>
<td>7254</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6473.4</td>
<td>780.6</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6202</td>
<td>958</td>
<td>7160</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6389.5</td>
<td>770.5</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6334</td>
<td>910</td>
<td>7244</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6464.5</td>
<td>779.5</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>6965</td>
<td>566</td>
<td>7531</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6720.6</td>
<td>810.4</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td>Rank of Education score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>6482</td>
<td>736</td>
<td>7218</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6441.3</td>
<td>776.7</td>
<td>24.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6163</td>
<td>1008</td>
<td>7171</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6399.3</td>
<td>771.7</td>
<td>24.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6393</td>
<td>852</td>
<td>7245</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6465.4</td>
<td>779.6</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>7010</td>
<td>545</td>
<td>7555</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6742</td>
<td>813</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>Rank of Education score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>6424</td>
<td>779</td>
<td>7203</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6427.9</td>
<td>773.1</td>
<td>24.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6201</td>
<td>958</td>
<td>7159</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6388.6</td>
<td>770.4</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6408</td>
<td>862</td>
<td>7270</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6487.7</td>
<td>782.3</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>7015</td>
<td>542</td>
<td>7557</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>6743.8</td>
<td>813.2</td>
<td>25.9</td>
<td></td>
</tr>
</tbody>
</table>
Table A30: Seaside (+R) v Inland – Housing

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>(\chi^2)</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland n = 26,048</td>
<td>Seaside (+R) n = 3,141</td>
<td>Total 29,189</td>
<td>(\chi^2) C.V</td>
<td>df</td>
</tr>
<tr>
<td>Rank of Housing score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>6641</td>
<td>6659</td>
<td>664</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>25.50%</td>
<td>26.10%</td>
<td>25.6</td>
<td>25.50%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6675</td>
<td>6574.2</td>
<td>25.60%</td>
<td>692</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>25.60%</td>
<td>22.00%</td>
<td>24.6</td>
<td>25.60%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6488</td>
<td>6412.7</td>
<td>24.90%</td>
<td>698</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>24.90%</td>
<td>22.00%</td>
<td>24.6</td>
<td>24.90%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>6244</td>
<td>6402</td>
<td>24.00%</td>
<td>930</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>24.00%</td>
<td>29.60%</td>
<td>24.6</td>
<td>24.00%</td>
</tr>
<tr>
<td>Rank of Housing score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>6655</td>
<td>6601.9</td>
<td>25.50%</td>
<td>743</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>25.50%</td>
<td>23.70%</td>
<td>25.3</td>
<td>25.50%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6509</td>
<td>6573.4</td>
<td>25.00%</td>
<td>857</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>25.00%</td>
<td>27.30%</td>
<td>25.2</td>
<td>25.00%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6420</td>
<td>6459.1</td>
<td>24.60%</td>
<td>818</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>24.60%</td>
<td>26.00%</td>
<td>24.8</td>
<td>24.60%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>6464</td>
<td>6413.6</td>
<td>24.80%</td>
<td>723</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>24.80%</td>
<td>23.00%</td>
<td>24.6</td>
<td>24.80%</td>
</tr>
<tr>
<td>Rank of Housing score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>6639</td>
<td>6592.1</td>
<td>25.50%</td>
<td>748</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>25.50%</td>
<td>23.80%</td>
<td>25.3</td>
<td>25.50%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6569</td>
<td>6634.9</td>
<td>25.20%</td>
<td>866</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>25.20%</td>
<td>27.60%</td>
<td>25.5</td>
<td>25.20%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6361</td>
<td>6427.9</td>
<td>24.40%</td>
<td>842</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>24.40%</td>
<td>26.80%</td>
<td>24.7</td>
<td>24.40%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>6479</td>
<td>6393.1</td>
<td>24.90%</td>
<td>685</td>
</tr>
</tbody>
</table>
Table A31: Seaside (+R) v Inland – Crime

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ², Cramer’s V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland n = 26,048</td>
<td>89.2%</td>
</tr>
<tr>
<td>Rank of Crime score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>7242</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6836.6</td>
<td>824.4</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.80%</td>
<td>13.30%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6724</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6636.7</td>
<td>800.3</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.80%</td>
<td>22.70%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6235</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6425.2</td>
<td>774.8</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.90%</td>
<td>30.70%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>5847</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6149.5</td>
<td>741.5</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>22.40%</td>
<td>33.20%</td>
</tr>
<tr>
<td>Rank of Crime score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>7124</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6810.7</td>
<td>821.3</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.30%</td>
<td>16.20%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6648</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6616.2</td>
<td>797.8</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.50%</td>
<td>24.40%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6319</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6432.4</td>
<td>775.6</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>24.30%</td>
<td>31.10%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>5957</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6188.7</td>
<td>746.3</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>22.90%</td>
<td>31.10%</td>
</tr>
<tr>
<td>Rank of Crime score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>7205</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6832.1</td>
<td>823.9</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.70%</td>
<td>14.40%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>6837</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6695.6</td>
<td>807.4</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.20%</td>
<td>21.20%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>6325</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6430.6</td>
<td>775.4</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>24.30%</td>
<td>28.00%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>5681</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>6089.7</td>
<td>734.3</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>21.80%</td>
<td>36.40%</td>
</tr>
</tbody>
</table>
Table A32: Seaside (+R) v Inland – Living environment

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ^2, Cramer’s V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inland n = 26,048</td>
<td>Seaside (+R) n = 3,141</td>
</tr>
<tr>
<td>Rank of Living Environment score, 2004</td>
<td>MD</td>
<td>Observed 6829</td>
<td>Expected 826.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6857.1</td>
<td>27.20%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 6504</td>
<td>Expected 812</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6528.7</td>
<td>25.90%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 6424</td>
<td>Expected 772.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6402.9</td>
<td>23.90%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 6291</td>
<td>Expected 723</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6259.2</td>
<td>23.00%</td>
</tr>
<tr>
<td>Rank of Living Environment score, 2007</td>
<td>MD</td>
<td>Observed 6613</td>
<td>Expected 951</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6750</td>
<td>30.30%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 6527</td>
<td>Expected 861</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6593</td>
<td>25.30%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 6447</td>
<td>Expected 728</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6402.9</td>
<td>23.20%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 6461</td>
<td>Expected 601</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6302.1</td>
<td>19.10%</td>
</tr>
<tr>
<td>Rank of Living Environment score, 2010</td>
<td>MD</td>
<td>Observed 6549</td>
<td>Expected 979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6717.9</td>
<td>31.20%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 6568</td>
<td>Expected 796</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6571.6</td>
<td>25.20%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 6491</td>
<td>Expected 734</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6447.5</td>
<td>23.40%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 6440</td>
<td>Expected 632</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 6311</td>
<td>20.10%</td>
</tr>
</tbody>
</table>
Table A33: Seaside (+R) v Coastal – Overall Index of M.D.

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>Coastal n = 2,107</th>
<th>Seaside (+R) n = 3,141</th>
<th>Total n = 5,248</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of IMD score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>555</td>
<td>738</td>
<td>1291</td>
<td>66.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>518.3</td>
<td>772.7</td>
<td>24.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.20%</td>
<td>23.50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>585</td>
<td>1066</td>
<td>1651</td>
<td>14.94</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>662.9</td>
<td>988.1</td>
<td>31.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.80%</td>
<td>33.90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>553</td>
<td>941</td>
<td>812</td>
<td>8.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>599.8</td>
<td>894.2</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.20%</td>
<td>30.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>416</td>
<td>396</td>
<td>812</td>
<td>8.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>326</td>
<td>486</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>19.70%</td>
<td>12.60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>555</td>
<td>750</td>
<td>1305</td>
<td>58.2</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>523.9</td>
<td>781.1</td>
<td>24.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.30%</td>
<td>23.90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>585</td>
<td>1085</td>
<td>1670</td>
<td>16.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>670.5</td>
<td>999.5</td>
<td>31.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.80%</td>
<td>34.50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>548</td>
<td>889</td>
<td>1437</td>
<td>14.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>576.9</td>
<td>860.1</td>
<td>27.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.00%</td>
<td>28.30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>419</td>
<td>417</td>
<td>836</td>
<td>8.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>335.6</td>
<td>500.4</td>
<td>15.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>19.90%</td>
<td>13.30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>557</td>
<td>769</td>
<td>1326</td>
<td>64.4</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>532.4</td>
<td>793.6</td>
<td>25.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.40%</td>
<td>24.50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>583</td>
<td>1024</td>
<td>1607</td>
<td>16.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>645.2</td>
<td>961.8</td>
<td>30.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.70%</td>
<td>32.60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>508</td>
<td>903</td>
<td>1411</td>
<td>14.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>566.5</td>
<td>844.5</td>
<td>26.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>24.10%</td>
<td>28.70%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>459</td>
<td>445</td>
<td>904</td>
<td>9.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>362.9</td>
<td>541.1</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>21.80%</td>
<td>14.20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A34: Seaside (+R) v Coastal – Income

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ^2</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coastal n = 2,107</td>
<td>Seaside (+R) n = 3,141</td>
<td>Total n = 5,248</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Income score, 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>Observed 529</td>
<td>Expected 515.1</td>
<td>% within LSOA t. 25.10%</td>
<td>Seaside (+R) 754</td>
<td>Expected 767.9</td>
<td>% within LSOA t. 24.00%</td>
</tr>
<tr>
<td>AA</td>
<td>Observed 613</td>
<td>Expected 671.3</td>
<td>% within LSOA t. 29.10%</td>
<td>Seaside (+R) 1059</td>
<td>Expected 1000.7</td>
<td>% within LSOA t. 33.70%</td>
</tr>
<tr>
<td>BA</td>
<td>Observed 547</td>
<td>Expected 595.8</td>
<td>% within LSOA t. 26.00%</td>
<td>Seaside (+R) 937</td>
<td>Expected 888.2</td>
<td>% within LSOA t. 29.80%</td>
</tr>
<tr>
<td>LD</td>
<td>Observed 418</td>
<td>Expected 324.8</td>
<td>% within LSOA t. 19.80%</td>
<td>Seaside (+R) 391</td>
<td>Expected 484.2</td>
<td>% within LSOA t. 12.40%</td>
</tr>
<tr>
<td>Rank of Income score, 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>Observed 526</td>
<td>Expected 497</td>
<td>% within LSOA t. 25.00%</td>
<td>Seaside (+R) 712</td>
<td>Expected 741</td>
<td>% within LSOA t. 22.70%</td>
</tr>
<tr>
<td>AA</td>
<td>Observed 583</td>
<td>Expected 663.7</td>
<td>% within LSOA t. 27.70%</td>
<td>Seaside (+R) 1070</td>
<td>Expected 989.3</td>
<td>% within LSOA t. 34.10%</td>
</tr>
<tr>
<td>BA</td>
<td>Observed 544</td>
<td>Expected 603</td>
<td>% within LSOA t. 25.80%</td>
<td>Seaside (+R) 958</td>
<td>Expected 899</td>
<td>% within LSOA t. 30.50%</td>
</tr>
<tr>
<td>LD</td>
<td>Observed 454</td>
<td>Expected 343.3</td>
<td>% within LSOA t. 21.50%</td>
<td>Seaside (+R) 401</td>
<td>Expected 511.7</td>
<td>% within LSOA t. 12.80%</td>
</tr>
<tr>
<td>Rank of Income score, 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>Observed 526</td>
<td>Expected 509.1</td>
<td>% within LSOA t. 25.00%</td>
<td>Seaside (+R) 742</td>
<td>Expected 758.9</td>
<td>% within LSOA t. 23.60%</td>
</tr>
<tr>
<td>AA</td>
<td>Observed 569</td>
<td>Expected 645.6</td>
<td>% within LSOA t. 27.00%</td>
<td>Seaside (+R) 1039</td>
<td>Expected 962.4</td>
<td>% within LSOA t. 33.10%</td>
</tr>
<tr>
<td>BA</td>
<td>Observed 553</td>
<td>Expected 604.2</td>
<td>% within LSOA t. 26.20%</td>
<td>Seaside (+R) 952</td>
<td>Expected 900.8</td>
<td>% within LSOA t. 30.30%</td>
</tr>
<tr>
<td>LD</td>
<td>Observed 459</td>
<td>Expected 348.1</td>
<td>% within LSOA t. 21.80%</td>
<td>Seaside (+R) 408</td>
<td>Expected 518.9</td>
<td>% within LSOA t. 13.00%</td>
</tr>
</tbody>
</table>
Table A35: Seaside (+R) v Coastal – Employment

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>Coastal (n = 2,107)</th>
<th>Seaside (+R) (n = 3,141)</th>
<th>Total (n = 5,248)</th>
<th>(\chi^2)</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Employment score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>669</td>
<td>904</td>
<td>1573</td>
<td>106.7</td>
<td>0.143</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>631.5</td>
<td>941.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>31.80%</td>
<td>28.80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>578</td>
<td>1162</td>
<td>1740</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>698.6</td>
<td>1041.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>27.40%</td>
<td>37.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>543</td>
<td>839</td>
<td>1382</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>554.9</td>
<td>827.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>25.80%</td>
<td>26.70%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>317</td>
<td>236</td>
<td>553</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>222</td>
<td>331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>15.00%</td>
<td>7.50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Employment score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>654</td>
<td>890</td>
<td>1544</td>
<td>75.1</td>
<td>0.120</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>619.9</td>
<td>924.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>31.00%</td>
<td>28.30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>577</td>
<td>1088</td>
<td>1665</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>668.5</td>
<td>996.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>27.40%</td>
<td>34.60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>539</td>
<td>874</td>
<td>1413</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>567.3</td>
<td>845.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>25.60%</td>
<td>27.80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>337</td>
<td>289</td>
<td>626</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>251.3</td>
<td>374.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>16.00%</td>
<td>9.20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Employment score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>634</td>
<td>935</td>
<td>1569</td>
<td>55.6</td>
<td>0.103</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>629.9</td>
<td>939.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>30.10%</td>
<td>29.80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>587</td>
<td>1010</td>
<td>1597</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>641.2</td>
<td>955.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>27.90%</td>
<td>32.20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>546</td>
<td>896</td>
<td>1442</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>578.9</td>
<td>863.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>25.90%</td>
<td>28.50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>340</td>
<td>300</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>257</td>
<td>383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>16.10%</td>
<td>9.60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

390
Table A36: Seaside (+R) v Coastal – Health

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>Coastal n = 2,107</th>
<th>Seaside (+R) n = 3,141</th>
<th>Total n = 5,248</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Health score, 2004</td>
<td>MD</td>
<td>Expected</td>
<td>633</td>
<td>555.3</td>
<td>614.4</td>
<td>χ^2</td>
<td>df</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>576</td>
<td>1121</td>
<td>1597</td>
<td>3.000***</td>
<td>3</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.30%</td>
<td>35.70%</td>
<td>32.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Expected</td>
<td>681.3</td>
<td>1015.7</td>
<td>1697</td>
<td>3.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>576</td>
<td>1121</td>
<td>1597</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.30%</td>
<td>35.70%</td>
<td>32.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Expected</td>
<td>631.1</td>
<td>940.9</td>
<td>1572</td>
<td>3.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>548</td>
<td>1024</td>
<td>1597</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.00%</td>
<td>32.60%</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Expected</td>
<td>239.3</td>
<td>356.7</td>
<td>596</td>
<td>3.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>350</td>
<td>246</td>
<td>596</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>16.60%</td>
<td>7.80%</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Health score, 2007</td>
<td>MD</td>
<td>Expected</td>
<td>625</td>
<td>803</td>
<td>1428</td>
<td>2.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>559</td>
<td>1112</td>
<td>1671</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>29.70%</td>
<td>35.40%</td>
<td>31.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Expected</td>
<td>670.9</td>
<td>1000.1</td>
<td>1507</td>
<td>3.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>554</td>
<td>953</td>
<td>1507</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.50%</td>
<td>30.30%</td>
<td>28.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Expected</td>
<td>605</td>
<td>902</td>
<td>642</td>
<td>3.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>520</td>
<td>273</td>
<td>642</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>17.50%</td>
<td>8.70%</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Health score, 2010</td>
<td>MD</td>
<td>Expected</td>
<td>654</td>
<td>872</td>
<td>1526</td>
<td>1.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>578</td>
<td>1075</td>
<td>1653</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>31.00%</td>
<td>34.20%</td>
<td>31.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Expected</td>
<td>663.7</td>
<td>989.3</td>
<td>1439</td>
<td>3.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>520</td>
<td>919</td>
<td>1439</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.40%</td>
<td>29.30%</td>
<td>27.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Expected</td>
<td>577.7</td>
<td>861.3</td>
<td>630</td>
<td>3.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>355</td>
<td>275</td>
<td>630</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>16.80%</td>
<td>8.80%</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A37: Seaside (R) v Coastal – Education

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>Coastal n = 2,107</th>
<th>Seaside (R) n = 3,141</th>
<th>Total n = 5,248</th>
<th>(\chi^2)</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Education score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>714</td>
<td>707</td>
<td>1421</td>
<td>92.0</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>570.5</td>
<td>850.5</td>
<td>63.90%</td>
<td>22.50%</td>
<td>27.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>33.90%</td>
<td>30.50%</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>618</td>
<td>958</td>
<td>1576</td>
<td>61.8</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>632.7</td>
<td>943.3</td>
<td>63.27%</td>
<td>30.50%</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>29.30%</td>
<td>30.00%</td>
<td>26.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>490</td>
<td>910</td>
<td>1400</td>
<td>61.0</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>562.1</td>
<td>837.9</td>
<td>56.21%</td>
<td>29.00%</td>
<td>26.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>23.30%</td>
<td>29.00%</td>
<td>26.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>285</td>
<td>566</td>
<td>851</td>
<td>56.5</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>341.7</td>
<td>509.3</td>
<td>34.17%</td>
<td>18.00%</td>
<td>16.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>13.50%</td>
<td>18.00%</td>
<td>16.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Education score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>732</td>
<td>736</td>
<td>1468</td>
<td>83.4</td>
<td>0.126</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>589.4</td>
<td>878.6</td>
<td>58.94%</td>
<td>23.40%</td>
<td>28.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>34.70%</td>
<td>32.10%</td>
<td>30.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>605</td>
<td>1008</td>
<td>1613</td>
<td>60.5</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>647.6</td>
<td>965.4</td>
<td>64.76%</td>
<td>32.10%</td>
<td>30.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>28.70%</td>
<td>32.10%</td>
<td>30.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>493</td>
<td>852</td>
<td>1345</td>
<td>49.3</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>540</td>
<td>805</td>
<td>54.0</td>
<td>8.05</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>23.40%</td>
<td>27.10%</td>
<td>25.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>277</td>
<td>545</td>
<td>822</td>
<td>54.5</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>330</td>
<td>492</td>
<td>33.0</td>
<td>4.92</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>13.10%</td>
<td>17.40%</td>
<td>15.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Education score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>726</td>
<td>779</td>
<td>1505</td>
<td>61.3</td>
<td>0.108</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>604.2</td>
<td>900.8</td>
<td>60.42%</td>
<td>24.80%</td>
<td>28.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>34.50%</td>
<td>30.50%</td>
<td>29.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>664</td>
<td>958</td>
<td>1562</td>
<td>66.4</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>627.1</td>
<td>934.9</td>
<td>62.71%</td>
<td>30.50%</td>
<td>29.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>28.70%</td>
<td>30.50%</td>
<td>29.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>467</td>
<td>862</td>
<td>1329</td>
<td>46.7</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>533.6</td>
<td>795.4</td>
<td>53.36%</td>
<td>27.40%</td>
<td>25.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>22.20%</td>
<td>27.40%</td>
<td>25.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>310</td>
<td>542</td>
<td>852</td>
<td>54.2</td>
<td>0.132</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>342.1</td>
<td>509.9</td>
<td>34.21%</td>
<td>17.30%</td>
<td>16.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A38: Seaside (+R) v Coastal – Housing

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>Coastal n = 2,107</th>
<th>Seaside (+R) n = 3,141</th>
<th>Total n = 5,248</th>
<th>χ²</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Housing score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>242</td>
<td>821</td>
<td>1063</td>
<td>181.2</td>
<td>0.186</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>426.8</td>
<td>636.2</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>40.1%</td>
<td>59.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>503</td>
<td>692</td>
<td>1195</td>
<td>23.90%</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>479.8</td>
<td>715.2</td>
<td>22.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.90%</td>
<td>22.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>659</td>
<td>698</td>
<td>1357</td>
<td>31.30%</td>
<td>25.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>544.8</td>
<td>812.2</td>
<td>25.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>31.30%</td>
<td>22.20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>703</td>
<td>930</td>
<td>1633</td>
<td>33.40%</td>
<td>31.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>655.6</td>
<td>977.4</td>
<td>31.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>33.40%</td>
<td>29.60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Housing score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>308</td>
<td>743</td>
<td>1051</td>
<td>91.1</td>
<td>0.132</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>422</td>
<td>629</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>14.60%</td>
<td>23.70%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>514</td>
<td>857</td>
<td>1371</td>
<td>24.40%</td>
<td>26.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>550.4</td>
<td>820.6</td>
<td>26.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>24.40%</td>
<td>27.30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>645</td>
<td>818</td>
<td>1463</td>
<td>30.60%</td>
<td>27.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>587.4</td>
<td>875.6</td>
<td>27.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>30.60%</td>
<td>26.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>640</td>
<td>723</td>
<td>1363</td>
<td>30.40%</td>
<td>26.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>547.2</td>
<td>815.8</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>30.40%</td>
<td>23.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Housing score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>310</td>
<td>748</td>
<td>1058</td>
<td>131.2</td>
<td>0.158</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>424.8</td>
<td>633.2</td>
<td>20.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>14.70%</td>
<td>23.80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>466</td>
<td>866</td>
<td>1332</td>
<td>22.10%</td>
<td>25.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>534.8</td>
<td>797.2</td>
<td>25.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>22.10%</td>
<td>27.60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>637</td>
<td>842</td>
<td>1479</td>
<td>30.20%</td>
<td>28.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>593.8</td>
<td>885.2</td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>30.20%</td>
<td>26.80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>694</td>
<td>685</td>
<td>1379</td>
<td>32.90%</td>
<td>21.80%</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td>Deprivation measure</td>
<td>Deprivation level</td>
<td>LSOA type</td>
<td>χ^2</td>
<td>Cramer’s V</td>
<td>df</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td>----</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal n = 2,107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40.1 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal n = 3,141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59.9 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal n = 5,248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>386</td>
<td>419</td>
<td>805</td>
<td>68.1</td>
<td>3</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>323.2</td>
<td>481.8</td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>18.30%</td>
<td>13.30%</td>
<td>24.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>576</td>
<td>713</td>
<td>1289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>517.5</td>
<td>771.5</td>
<td>27.30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>22.70%</td>
<td>22.70%</td>
<td>24.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>640</td>
<td>965</td>
<td>1605</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>644.4</td>
<td>960.6</td>
<td>30.40%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>30.70%</td>
<td>30.70%</td>
<td>30.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>505</td>
<td>1044</td>
<td>1549</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>621.9</td>
<td>927.1</td>
<td>24.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>33.20%</td>
<td>33.20%</td>
<td>29.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>425</td>
<td>508</td>
<td>933</td>
<td>47.9</td>
<td>3</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>374.6</td>
<td>558.4</td>
<td>20.20%</td>
<td></td>
<td>17.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>16.20%</td>
<td>16.20%</td>
<td>17.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>563</td>
<td>766</td>
<td>1329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>533.6</td>
<td>795.4</td>
<td>26.70%</td>
<td></td>
<td>25.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>24.40%</td>
<td>24.40%</td>
<td>25.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>640</td>
<td>889</td>
<td>1529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>613.9</td>
<td>915.1</td>
<td>30.40%</td>
<td></td>
<td>29.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>28.30%</td>
<td>28.30%</td>
<td>29.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>479</td>
<td>978</td>
<td>1457</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>585</td>
<td>872</td>
<td>22.70%</td>
<td></td>
<td>27.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>31.10%</td>
<td>31.10%</td>
<td>27.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>398</td>
<td>451</td>
<td>849</td>
<td>43.0</td>
<td>3</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>340.9</td>
<td>508.1</td>
<td>18.90%</td>
<td></td>
<td>16.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>14.40%</td>
<td>14.40%</td>
<td>16.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>479</td>
<td>666</td>
<td>1145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>459.7</td>
<td>685.3</td>
<td>22.70%</td>
<td></td>
<td>21.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>21.20%</td>
<td>21.20%</td>
<td>21.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>631</td>
<td>881</td>
<td>1512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>607</td>
<td>905</td>
<td>29.90%</td>
<td></td>
<td>28.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>28.00%</td>
<td>28.00%</td>
<td>28.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>599</td>
<td>1143</td>
<td>1742</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>699.4</td>
<td>1042.6</td>
<td>28.40%</td>
<td></td>
<td>33.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>36.40%</td>
<td>36.40%</td>
<td>33.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A40: Seaside (+R) v Coastal – Living environment

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>Coastal n = 2,107</th>
<th>Seaside (+R) n = 3,141</th>
<th>Total n = 5,248</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Living Environment score, 2004</td>
<td></td>
<td>Coastal</td>
<td>293</td>
<td>855</td>
<td>1148</td>
<td>186.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seaside (+R)</td>
<td>460.9</td>
<td>687.1</td>
<td>21.9</td>
<td>0.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>457</td>
<td>812</td>
<td>1269</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>13.90%</td>
<td>27.20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>509.5</td>
<td>759.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>21.70%</td>
<td>25.90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>643</td>
<td>751</td>
<td>1394</td>
<td>0.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>559.7</td>
<td>834.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>30.50%</td>
<td>23.90%</td>
<td>26.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>714</td>
<td>723</td>
<td>1437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>576.9</td>
<td>860.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>33.90%</td>
<td>23.00%</td>
<td>27.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Living Environment score, 2007</td>
<td></td>
<td>Coastal</td>
<td>301</td>
<td>951</td>
<td>1252</td>
<td>307.5</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seaside (+R)</td>
<td>502.7</td>
<td>749.3</td>
<td>23.9</td>
<td>0.242</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>430</td>
<td>861</td>
<td>1291</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>14.30%</td>
<td>30.30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>518.3</td>
<td>772.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>20.40%</td>
<td>27.40%</td>
<td>24.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>644</td>
<td>728</td>
<td>1372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>550.8</td>
<td>821.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>30.60%</td>
<td>23.20%</td>
<td>26.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>732</td>
<td>601</td>
<td>1333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>553.2</td>
<td>797.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>34.70%</td>
<td>19.10%</td>
<td>25.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Living Environment score, 2010</td>
<td></td>
<td>Coastal</td>
<td>327</td>
<td>979</td>
<td>1306</td>
<td>249.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seaside (+R)</td>
<td>524.3</td>
<td>781.7</td>
<td>24.9</td>
<td>0.218</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>446</td>
<td>796</td>
<td>1242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>15.50%</td>
<td>31.20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>498.6</td>
<td>743.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>21.20%</td>
<td>25.30%</td>
<td>23.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>504</td>
<td>748</td>
<td>1338</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>537.2</td>
<td>800.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>28.70%</td>
<td>23.40%</td>
<td>25.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>730</td>
<td>632</td>
<td>1362</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>546.8</td>
<td>815.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>34.60%</td>
<td>20.10%</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A41: Seaside (+R) v Seaside (-R) – Overall Index of M.D.

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Seaside (-R)</td>
<td>Seaside (+R)</td>
<td>Total</td>
<td>χ^2</td>
<td>df</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n = 1,186</td>
<td>n = 3,141</td>
<td>4,327</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>101</td>
<td>738</td>
<td>839</td>
<td>242.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>230</td>
<td>609</td>
<td></td>
<td>0.237</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>8.50%</td>
<td>33.50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>330</td>
<td>1066</td>
<td>1396</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>382.6</td>
<td>1013.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>27.80%</td>
<td>33.90%</td>
<td>32.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>420</td>
<td>941</td>
<td>1361</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>373</td>
<td>988</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>35.40%</td>
<td>30.00%</td>
<td>31.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>335</td>
<td>396</td>
<td>731</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>200.4</td>
<td>530.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>28.20%</td>
<td>12.60%</td>
<td>16.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>104</td>
<td>750</td>
<td>854</td>
<td>198.9</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>234.1</td>
<td>619.9</td>
<td></td>
<td>0.214</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>8.80%</td>
<td>23.90%</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>367</td>
<td>1085</td>
<td>1452</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>398</td>
<td>1054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>30.90%</td>
<td>34.50%</td>
<td>33.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>403</td>
<td>889</td>
<td>1292</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>354.1</td>
<td>937.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>34.00%</td>
<td>28.30%</td>
<td>29.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>312</td>
<td>417</td>
<td>729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>199.8</td>
<td>529.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>26.30%</td>
<td>13.30%</td>
<td>16.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>110</td>
<td>769</td>
<td>879</td>
<td>167.1</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>240.9</td>
<td>638.1</td>
<td></td>
<td>0.197</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>9.30%</td>
<td>24.50%</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>367</td>
<td>1024</td>
<td>1391</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>381.3</td>
<td>1009.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>30.90%</td>
<td>32.60%</td>
<td>32.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>414</td>
<td>903</td>
<td>1317</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>361</td>
<td>956</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>34.90%</td>
<td>28.70%</td>
<td>30.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>295</td>
<td>445</td>
<td>740</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>202.8</td>
<td>537.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>24.90%</td>
<td>14.20%</td>
<td>17.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A42: Seaside (+R) v Seaside (-R) – Income

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ²</th>
<th>Cramer’s V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Seaside (-R) n = 1,186</td>
<td>Seaside (+R) n = 3,141</td>
<td>Total n = 4,327</td>
</tr>
<tr>
<td>Rank of Income score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>122</td>
<td>754</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>240.1</td>
<td>635.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>10.30%</td>
<td>24.00%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>314</td>
<td>1059</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>376.3</td>
<td>996.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>26.50%</td>
<td>33.70%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>429</td>
<td>937</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>374.4</td>
<td>991.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>36.20%</td>
<td>29.80%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>321</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>195.2</td>
<td>516.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>27.10%</td>
<td>12.40%</td>
</tr>
<tr>
<td>Rank of Income score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>117</td>
<td>712</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>227.2</td>
<td>601.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>9.90%</td>
<td>22.70%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>350</td>
<td>1070</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>389.2</td>
<td>1030.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>29.50%</td>
<td>34.10%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>440</td>
<td>958</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>383.2</td>
<td>1014.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>37.10%</td>
<td>30.50%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>279</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>186.4</td>
<td>493.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>23.50%</td>
<td>12.80%</td>
</tr>
<tr>
<td>Rank of Income score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>112</td>
<td>742</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>234.1</td>
<td>619.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>9.40%</td>
<td>23.60%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>340</td>
<td>1039</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>378</td>
<td>1001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>28.70%</td>
<td>33.10%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>432</td>
<td>952</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>379.3</td>
<td>1004.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>36.40%</td>
<td>30.30%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>302</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>194.6</td>
<td>515.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>25.50%</td>
<td>13.00%</td>
</tr>
</tbody>
</table>
Table A43: Seaside (+R) v Seaside (-R) – Employment

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Seaside (-R) n = 1,186 27.4 %</td>
<td>Seaside (+R) n = 3,141 72.6%</td>
<td>Total 4,327</td>
<td>χ²</td>
</tr>
<tr>
<td>Rank of Employment score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>152</td>
<td>904</td>
<td>1056</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>289.4</td>
<td>766.6</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>12.80%</td>
<td>28.80%</td>
<td>1486</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>324</td>
<td>1162</td>
<td>1408</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>407.3</td>
<td>1078.7</td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.30%</td>
<td>37.00%</td>
<td>1244</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>405</td>
<td>839</td>
<td>1286</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>341</td>
<td>903</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>34.10%</td>
<td>26.70%</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>305</td>
<td>236</td>
<td>1034</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>148.3</td>
<td>39.7</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.70%</td>
<td>7.50%</td>
<td>302.2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD</td>
<td>Observed</td>
<td>144</td>
<td>890</td>
<td>1088</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>283.4</td>
<td>750.6</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>12.10%</td>
<td>28.30%</td>
<td>282.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>320</td>
<td>1088</td>
<td>1328</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>385.9</td>
<td>1022.1</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.00%</td>
<td>34.60%</td>
<td>964</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>412</td>
<td>874</td>
<td>1301</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>352.5</td>
<td>933.5</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>34.70%</td>
<td>27.80%</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>310</td>
<td>289</td>
<td>1088</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>164.2</td>
<td>434.8</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.10%</td>
<td>9.20%</td>
<td>282.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD</td>
<td>Observed</td>
<td>153</td>
<td>935</td>
<td>1088</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>298.2</td>
<td>789.8</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>12.90%</td>
<td>29.80%</td>
<td>282.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>318</td>
<td>1010</td>
<td>1328</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>364</td>
<td>964</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.80%</td>
<td>32.20%</td>
<td>1301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>405</td>
<td>896</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>356.6</td>
<td>944.4</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>34.10%</td>
<td>28.50%</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>310</td>
<td>300</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>167.2</td>
<td>442.8</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>26.10%</td>
<td>9.60%</td>
<td>14.1</td>
<td></td>
</tr>
</tbody>
</table>
Table A44: Seaside (+R) v Seaside (-R) – Health

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ²</th>
<th>Cramer's V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Seaside (-R)</td>
<td></td>
<td>Seaside (+R)</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n = 1,186</td>
<td>27.4 %</td>
<td>n = 3,141</td>
<td>72.6%</td>
<td>4,327</td>
</tr>
<tr>
<td>Rank of Health score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>100</td>
<td>750</td>
<td>850</td>
<td>628.9</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>233</td>
<td>617</td>
<td>19.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>8.40%</td>
<td>23.90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>225</td>
<td>1121</td>
<td>1346</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>368.9</td>
<td>977.1</td>
<td>31.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>19.00%</td>
<td>35.70%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>432</td>
<td>1024</td>
<td>1456</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>399.1</td>
<td>1056.9</td>
<td>33.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>36.40%</td>
<td>32.60%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>429</td>
<td>246</td>
<td>675</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>185</td>
<td>490</td>
<td>15.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>36.20%</td>
<td>7.80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Health score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>104</td>
<td>803</td>
<td>907</td>
<td>545.8</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>248.6</td>
<td>658.4</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>8.80%</td>
<td>25.60%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>235</td>
<td>1112</td>
<td>1347</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>369.2</td>
<td>977.8</td>
<td>31.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>19.80%</td>
<td>35.40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>446</td>
<td>953</td>
<td>1399</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>383.5</td>
<td>1015.5</td>
<td>32.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>37.60%</td>
<td>30.30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>401</td>
<td>273</td>
<td>674</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>184.7</td>
<td>489.3</td>
<td>15.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>33.80%</td>
<td>8.70%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Health score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>114</td>
<td>872</td>
<td>986</td>
<td>445.3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>270.3</td>
<td>715.7</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>9.60%</td>
<td>27.80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>266</td>
<td>1075</td>
<td>1341</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>367.6</td>
<td>973.4</td>
<td>31.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>22.40%</td>
<td>34.20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>454</td>
<td>919</td>
<td>1373</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>376.3</td>
<td>996.7</td>
<td>31.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>38.30%</td>
<td>29.30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>352</td>
<td>275</td>
<td>627</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>171.9</td>
<td>455.1</td>
<td>14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>29.70%</td>
<td>8.80%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A45: Seaside (+R) v Seaside (-R) – Education

<table>
<thead>
<tr>
<th>Deprivation measure score, 2004</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>(\chi^2)</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Seaside (-R)</td>
<td>Seaside (+R)</td>
<td>Total 4,327</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n = 1,186</td>
<td>n = 3,141</td>
<td>859</td>
<td>70.1</td>
<td>0.127</td>
</tr>
<tr>
<td>Rank of Education score</td>
<td>MD</td>
<td>Observed</td>
<td>152</td>
<td>235.4</td>
<td>623.6</td>
<td>19.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>235.4</td>
<td>623.6</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>27.4 %</td>
<td>72.6%</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>343</td>
<td>356.6</td>
<td>944.4</td>
<td>30.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>356.6</td>
<td>944.4</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>28.90%</td>
<td>30.50%</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>387</td>
<td>355.5</td>
<td>941.5</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>355.5</td>
<td>941.5</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>32.60%</td>
<td>29.00%</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>304</td>
<td>238.5</td>
<td>566</td>
<td>18.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>238.5</td>
<td>566</td>
<td>18.00%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>25.60%</td>
<td>18.00%</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>Rank of Education score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>170</td>
<td>248.3</td>
<td>736</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>248.3</td>
<td>736</td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>14.30%</td>
<td>23.40%</td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>345</td>
<td>370.8</td>
<td>1008</td>
<td>31.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>370.8</td>
<td>1008</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>29.10%</td>
<td>32.10%</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>383</td>
<td>338.5</td>
<td>852</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>338.5</td>
<td>852</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>32.30%</td>
<td>27.10%</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>288</td>
<td>228.3</td>
<td>545</td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>228.3</td>
<td>545</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>24.30%</td>
<td>17.40%</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td>Rank of Education score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>191</td>
<td>265.9</td>
<td>779</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>265.9</td>
<td>779</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>16.10%</td>
<td>24.80%</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>358</td>
<td>360.7</td>
<td>958</td>
<td>30.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>360.7</td>
<td>958</td>
<td>30.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>30.20%</td>
<td>30.50%</td>
<td>30.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>384</td>
<td>341.5</td>
<td>862</td>
<td>28.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>341.5</td>
<td>862</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>32.40%</td>
<td>27.40%</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>253</td>
<td>217.9</td>
<td>542</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>217.9</td>
<td>542</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>21.30%</td>
<td>17.30%</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>Deprivation measure</td>
<td>Deprivation level</td>
<td>LSOA type</td>
<td>Seaside (-R) n = 1,186</td>
<td>Seaside (+R) n = 3,141</td>
<td>Total n = 4,327</td>
<td>χ^2</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Rank of Housing score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>416</td>
<td>821</td>
<td>1237</td>
<td>51.1</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>339.1</td>
<td>897.9</td>
<td>28.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>35.10%</td>
<td>26.10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>251</td>
<td>692</td>
<td>943</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>258.5</td>
<td>684.5</td>
<td>21.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>21.20%</td>
<td>22.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>276</td>
<td>698</td>
<td>974</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>267</td>
<td>707</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.30%</td>
<td>22.20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>243</td>
<td>930</td>
<td>1173</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>321.5</td>
<td>851.5</td>
<td>27.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>20.50%</td>
<td>29.60%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Housing score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>414</td>
<td>743</td>
<td>1157</td>
<td>70.8</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>317.1</td>
<td>839.9</td>
<td>26.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>34.90%</td>
<td>23.70%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>241</td>
<td>857</td>
<td>1098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>301</td>
<td>797</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>20.30%</td>
<td>27.30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>238</td>
<td>818</td>
<td>1056</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>289.4</td>
<td>766.6</td>
<td>24.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>20.10%</td>
<td>26.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>293</td>
<td>723</td>
<td>1016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>278.5</td>
<td>737.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>24.70%</td>
<td>23.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Housing score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>423</td>
<td>748</td>
<td>1171</td>
<td>75.8</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>321.5</td>
<td>850</td>
<td>27.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>35.70%</td>
<td>23.80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>220</td>
<td>866</td>
<td>1086</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>297.7</td>
<td>788.3</td>
<td>25.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>18.50%</td>
<td>27.60%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>281</td>
<td>842</td>
<td>1123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>307.8</td>
<td>815.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.70%</td>
<td>26.80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>262</td>
<td>685</td>
<td>947</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>259.6</td>
<td>687.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>22.10%</td>
<td>21.80%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A47: Seaside (+R) v Seaside (-R) – Crime

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Crime score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>73</td>
<td>492</td>
<td>300.6</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>134.9</td>
<td>375.1</td>
<td>6.20%</td>
<td>13.30%</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.4%</td>
<td>72.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>108</td>
<td>821</td>
<td>9.10%</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>225</td>
<td>22.70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.70%</td>
<td>28.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>281</td>
<td>1246</td>
<td>3.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>341.5</td>
<td>904.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.70%</td>
<td>30.70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>724</td>
<td>1768</td>
<td>3.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>484.6</td>
<td>1283.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>61.00%</td>
<td>40.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>63</td>
<td>571</td>
<td>325.6</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>156.5</td>
<td>414.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>5.30%</td>
<td>13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>144</td>
<td>910</td>
<td>12.10%</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>249.4</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>12.10%</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>273</td>
<td>1162</td>
<td>3.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>318.5</td>
<td>843.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.00%</td>
<td>28.30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>706</td>
<td>1684</td>
<td>3.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>461.6</td>
<td>1222.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>59.50%</td>
<td>38.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>66</td>
<td>517</td>
<td>204.1</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>141.7</td>
<td>11.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>5.60%</td>
<td>14.40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>139</td>
<td>805</td>
<td>11.70%</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>220.6</td>
<td>18.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>11.70%</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>284</td>
<td>1165</td>
<td>3.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>319.3</td>
<td>845.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>23.90%</td>
<td>28.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>697</td>
<td>1840</td>
<td>3.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>504.3</td>
<td>42.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>58.80%</td>
<td>36.40%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A48: Seaside (+R) v Seaside (-R) – Living environment

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ^2</th>
<th>Cramer's V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Living Environment score</td>
<td>MD</td>
<td>Observed</td>
<td>143</td>
<td>855</td>
<td>998</td>
<td>124.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>273.5</td>
<td>724.5</td>
<td>23.1</td>
<td>0.170</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>12.10%</td>
<td>27.20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>348</td>
<td>812</td>
<td>1160</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>317.9</td>
<td>842.1</td>
<td>29.30%</td>
<td>25.90%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>303</td>
<td>751</td>
<td>1054</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>288.9</td>
<td>765.1</td>
<td>25.50%</td>
<td>23.90%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>392</td>
<td>723</td>
<td>1115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>305.6</td>
<td>809.4</td>
<td>33.10%</td>
<td>23.00%</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Living Environment score</td>
<td>MD</td>
<td>Observed</td>
<td>255</td>
<td>951</td>
<td>1206</td>
<td>54.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>330.6</td>
<td>875.4</td>
<td>21.50%</td>
<td>30.30%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>303</td>
<td>861</td>
<td>1164</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>319</td>
<td>845</td>
<td>25.50%</td>
<td>27.40%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>302</td>
<td>728</td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>282.3</td>
<td>747.7</td>
<td>25.50%</td>
<td>23.20%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>326</td>
<td>601</td>
<td>927</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>254.1</td>
<td>672.9</td>
<td>27.50%</td>
<td>19.10%</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Living Environment score</td>
<td>MD</td>
<td>Observed</td>
<td>265</td>
<td>979</td>
<td>1244</td>
<td>41.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>341</td>
<td>903</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>311</td>
<td>796</td>
<td>1107</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>303.4</td>
<td>803.6</td>
<td>26.20%</td>
<td>25.30%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>292</td>
<td>734</td>
<td>1026</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>281.2</td>
<td>744.8</td>
<td>24.60%</td>
<td>23.40%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>318</td>
<td>632</td>
<td>950</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>260.4</td>
<td>689.6</td>
<td>26.80%</td>
<td>20.10%</td>
</tr>
</tbody>
</table>
Table A49: District type LSOAs by National LSOA Index of Multiple Deprivation deciles

<table>
<thead>
<tr>
<th>Index of M.D. decile</th>
<th>Inland</th>
<th>Coastal</th>
<th>Seaside</th>
<th>Seaside (-R)</th>
<th>Seaside (+R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.3</td>
<td>9.7</td>
<td>8.2</td>
<td>3.3</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10.4</td>
<td>11.1</td>
<td>7.3</td>
<td>3.5</td>
<td>8.8</td>
</tr>
<tr>
<td>3</td>
<td>9.9</td>
<td>10.9</td>
<td>10.3</td>
<td>5.6</td>
<td>12.1</td>
</tr>
<tr>
<td>4</td>
<td>9.5</td>
<td>11.5</td>
<td>12.4</td>
<td>11.7</td>
<td>12.6</td>
</tr>
<tr>
<td>5</td>
<td>9.2</td>
<td>11</td>
<td>14.3</td>
<td>16.1</td>
<td>13.6</td>
</tr>
<tr>
<td>6</td>
<td>9.5</td>
<td>9</td>
<td>13.2</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>7</td>
<td>9.7</td>
<td>10.9</td>
<td>11.6</td>
<td>12.6</td>
<td>11.2</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>9.3</td>
<td>10.1</td>
<td>12.6</td>
<td>9.2</td>
</tr>
<tr>
<td>9</td>
<td>10.4</td>
<td>9.3</td>
<td>7.7</td>
<td>9.9</td>
<td>6.9</td>
</tr>
<tr>
<td>10</td>
<td>11.1</td>
<td>7.4</td>
<td>4.8</td>
<td>9.6</td>
<td>3</td>
</tr>
<tr>
<td>District</td>
<td>Region</td>
<td>All LSOAs in district</td>
<td>LSOAs in the most deprived 10%</td>
<td>LSOAs in the most deprived 20%</td>
<td>% of LSOAs falling in the most deprived 10%</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Blackpool</td>
<td>NW</td>
<td>94</td>
<td>35</td>
<td>11</td>
<td>37.2</td>
</tr>
<tr>
<td>Hastings</td>
<td>SE</td>
<td>53</td>
<td>15</td>
<td>9</td>
<td>28.3</td>
</tr>
<tr>
<td>Wirral</td>
<td>NW</td>
<td>207</td>
<td>48</td>
<td>17</td>
<td>23.2</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>E</td>
<td>61</td>
<td>13</td>
<td>3</td>
<td>21.3</td>
</tr>
<tr>
<td>Sefton</td>
<td>NW</td>
<td>190</td>
<td>35</td>
<td>12</td>
<td>18.4</td>
</tr>
<tr>
<td>Thanet</td>
<td>SE</td>
<td>84</td>
<td>14</td>
<td>11</td>
<td>16.7</td>
</tr>
<tr>
<td>Torbay</td>
<td>SW</td>
<td>89</td>
<td>12</td>
<td>4</td>
<td>13.5</td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>SE</td>
<td>164</td>
<td>19</td>
<td>18</td>
<td>11.6</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>SE</td>
<td>123</td>
<td>14</td>
<td>14</td>
<td>11.4</td>
</tr>
<tr>
<td>Scarborough</td>
<td>Y&H</td>
<td>71</td>
<td>8</td>
<td>6</td>
<td>11.3</td>
</tr>
<tr>
<td>Lancaster</td>
<td>NW</td>
<td>89</td>
<td>10</td>
<td>8</td>
<td>11.2</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>NE</td>
<td>103</td>
<td>11</td>
<td>31</td>
<td>10.7</td>
</tr>
<tr>
<td>Weymouth & Portland</td>
<td>SW</td>
<td>39</td>
<td>4</td>
<td>6</td>
<td>10.3</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>SW</td>
<td>107</td>
<td>10</td>
<td>7</td>
<td>9.3</td>
</tr>
<tr>
<td>East Lindsey</td>
<td>EM</td>
<td>80</td>
<td>7</td>
<td>10</td>
<td>8.8</td>
</tr>
<tr>
<td>Wyre</td>
<td>NW</td>
<td>69</td>
<td>6</td>
<td>4</td>
<td>8.7</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>SE</td>
<td>59</td>
<td>5</td>
<td>5</td>
<td>8.5</td>
</tr>
<tr>
<td>Southend-on-sea</td>
<td>E</td>
<td>107</td>
<td>9</td>
<td>14</td>
<td>8.4</td>
</tr>
<tr>
<td>Tendring</td>
<td>E</td>
<td>90</td>
<td>7</td>
<td>8</td>
<td>7.8</td>
</tr>
<tr>
<td>North Somerset</td>
<td>SW</td>
<td>124</td>
<td>9</td>
<td>4</td>
<td>7.3</td>
</tr>
<tr>
<td>Waveney</td>
<td>E</td>
<td>73</td>
<td>5</td>
<td>7</td>
<td>6.8</td>
</tr>
<tr>
<td>Shepway</td>
<td>SE</td>
<td>65</td>
<td>4</td>
<td>7</td>
<td>6.2</td>
</tr>
<tr>
<td>Penwith</td>
<td>SW</td>
<td>38</td>
<td>2</td>
<td>5</td>
<td>5.3</td>
</tr>
<tr>
<td>North Devon</td>
<td>SW</td>
<td>58</td>
<td>2</td>
<td>4</td>
<td>3.4</td>
</tr>
<tr>
<td>Rother</td>
<td>SE</td>
<td>58</td>
<td>2</td>
<td>3</td>
<td>3.4</td>
</tr>
<tr>
<td>Arun</td>
<td>SE</td>
<td>94</td>
<td>3</td>
<td>5</td>
<td>3.2</td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>SE</td>
<td>68</td>
<td>2</td>
<td>4</td>
<td>2.9</td>
</tr>
<tr>
<td>Carrick</td>
<td>SW</td>
<td>58</td>
<td>1</td>
<td>5</td>
<td>1.7</td>
</tr>
<tr>
<td>Restormel</td>
<td>SW</td>
<td>64</td>
<td>1</td>
<td>4</td>
<td>1.6</td>
</tr>
<tr>
<td>Dover</td>
<td>SE</td>
<td>67</td>
<td>1</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>Canterbury</td>
<td>SE</td>
<td>90</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>SE</td>
<td>89</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>West Somerset</td>
<td>SW</td>
<td>23</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fylde</td>
<td>NW</td>
<td>51</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Teignbridge</td>
<td>SW</td>
<td>84</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Christchurch</td>
<td>SW</td>
<td>30</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>East Devon</td>
<td>SW</td>
<td>82</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Berwick-upon-Tweed</td>
<td>NE</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Purbeck</td>
<td>SW</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Seaside districts (+R)</td>
<td></td>
<td>3,141</td>
<td>314</td>
<td>277</td>
<td>10</td>
</tr>
</tbody>
</table>
Table A51: Number of LSOAs in the most deprived ten per cent of LSOAs in England by ‘seaside with resort’ district on IMD, 2007

<table>
<thead>
<tr>
<th>District</th>
<th>All LSOAs in district</th>
<th>LSOAs in the most deprived 10%</th>
<th>LSOAs in the most deprived 20%</th>
<th>% of LSOAs falling in the most deprived 10%</th>
<th>% of LSOAs falling in the most deprived 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackpool</td>
<td>94</td>
<td>30</td>
<td>11</td>
<td>31.9</td>
<td>11.7</td>
</tr>
<tr>
<td>Hastings</td>
<td>53</td>
<td>14</td>
<td>7</td>
<td>26.4</td>
<td>13.2</td>
</tr>
<tr>
<td>Wirral</td>
<td>207</td>
<td>50</td>
<td>18</td>
<td>24.2</td>
<td>8.7</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>61</td>
<td>12</td>
<td>5</td>
<td>19.7</td>
<td>8.2</td>
</tr>
<tr>
<td>Selton</td>
<td>190</td>
<td>34</td>
<td>15</td>
<td>17.9</td>
<td>7.9</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>103</td>
<td>15</td>
<td>33</td>
<td>14.6</td>
<td>32.0</td>
</tr>
<tr>
<td>Thanet</td>
<td>84</td>
<td>12</td>
<td>12</td>
<td>14.3</td>
<td>14.3</td>
</tr>
<tr>
<td>Torbay</td>
<td>89</td>
<td>10</td>
<td>4</td>
<td>11.2</td>
<td>4.5</td>
</tr>
<tr>
<td>Lancaster</td>
<td>89</td>
<td>9</td>
<td>8</td>
<td>10.1</td>
<td>9.0</td>
</tr>
<tr>
<td>Scarborough</td>
<td>71</td>
<td>7</td>
<td>6</td>
<td>9.9</td>
<td>8.5</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>123</td>
<td>12</td>
<td>12</td>
<td>9.8</td>
<td>9.8</td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>164</td>
<td>15</td>
<td>20</td>
<td>9.1</td>
<td>12.2</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>107</td>
<td>9</td>
<td>8</td>
<td>8.4</td>
<td>7.5</td>
</tr>
<tr>
<td>East Lindsey</td>
<td>80</td>
<td>6</td>
<td>9</td>
<td>7.5</td>
<td>11.3</td>
</tr>
<tr>
<td>Southend-on-sea</td>
<td>107</td>
<td>8</td>
<td>11</td>
<td>7.5</td>
<td>10.3</td>
</tr>
<tr>
<td>Wyre</td>
<td>69</td>
<td>5</td>
<td>5</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>Waveney</td>
<td>73</td>
<td>5</td>
<td>6</td>
<td>6.8</td>
<td>8.2</td>
</tr>
<tr>
<td>North Somerset</td>
<td>124</td>
<td>7</td>
<td>6</td>
<td>5.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Penwith</td>
<td>38</td>
<td>2</td>
<td>9</td>
<td>5.3</td>
<td>23.7</td>
</tr>
<tr>
<td>Weymouth and Portland</td>
<td>39</td>
<td>2</td>
<td>6</td>
<td>5.1</td>
<td>15.4</td>
</tr>
<tr>
<td>Shepway</td>
<td>65</td>
<td>3</td>
<td>6</td>
<td>4.6</td>
<td>9.2</td>
</tr>
<tr>
<td>Tendring</td>
<td>90</td>
<td>4</td>
<td>8</td>
<td>4.4</td>
<td>8.9</td>
</tr>
<tr>
<td>North Devon</td>
<td>58</td>
<td>2</td>
<td>3</td>
<td>3.4</td>
<td>5.2</td>
</tr>
<tr>
<td>Carrick</td>
<td>58</td>
<td>1</td>
<td>4</td>
<td>1.7</td>
<td>6.9</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>59</td>
<td>1</td>
<td>7</td>
<td>1.7</td>
<td>11.9</td>
</tr>
<tr>
<td>Restormel</td>
<td>64</td>
<td>1</td>
<td>5</td>
<td>1.6</td>
<td>7.8</td>
</tr>
<tr>
<td>Dover</td>
<td>67</td>
<td>1</td>
<td>5</td>
<td>1.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Sedge Moor</td>
<td>68</td>
<td>1</td>
<td>4</td>
<td>1.5</td>
<td>5.9</td>
</tr>
<tr>
<td>Arun</td>
<td>94</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7.4</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>89</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6.7</td>
</tr>
<tr>
<td>Christchurch</td>
<td>30</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6.7</td>
</tr>
<tr>
<td>Rother</td>
<td>58</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5.2</td>
</tr>
<tr>
<td>West Somerset</td>
<td>23</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4.3</td>
</tr>
<tr>
<td>Canterbury</td>
<td>90</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>Teignbridge</td>
<td>84</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2.4</td>
</tr>
<tr>
<td>Fylde</td>
<td>51</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>Berwick-upon-Tweed</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>East Devon</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Purbeck</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Seaside districts</td>
<td>3141</td>
<td>278</td>
<td>278</td>
<td>8.9</td>
<td>8.9</td>
</tr>
</tbody>
</table>
Table A52: Number of LSOAs in the most deprived ten per cent of LSOAs in England by ‘seaside with resort’ district on IMD, 2004

<table>
<thead>
<tr>
<th>District</th>
<th>All LSOAs in district</th>
<th>LSOAs in the most deprived 10%</th>
<th>LSOAs in the most deprived 20%</th>
<th>% of LSOAs falling in the most deprived 10%</th>
<th>% of LSOAs falling in the most deprived 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackpool</td>
<td>94</td>
<td>25</td>
<td>13</td>
<td>26.6</td>
<td>13.8</td>
</tr>
<tr>
<td>Wirral</td>
<td>207</td>
<td>52</td>
<td>23</td>
<td>25.1</td>
<td>11.1</td>
</tr>
<tr>
<td>Hastings</td>
<td>53</td>
<td>12</td>
<td>8</td>
<td>22.6</td>
<td>15.1</td>
</tr>
<tr>
<td>Sefton</td>
<td>190</td>
<td>37</td>
<td>13</td>
<td>19.5</td>
<td>6.8</td>
</tr>
<tr>
<td>South Tyneside</td>
<td>103</td>
<td>20</td>
<td>34</td>
<td>19.4</td>
<td>33.0</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>61</td>
<td>11</td>
<td>5</td>
<td>18.0</td>
<td>8.2</td>
</tr>
<tr>
<td>Thanet</td>
<td>84</td>
<td>10</td>
<td>10</td>
<td>11.9</td>
<td>11.9</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>123</td>
<td>13</td>
<td>14</td>
<td>10.6</td>
<td>11.4</td>
</tr>
<tr>
<td>Scarborough</td>
<td>71</td>
<td>7</td>
<td>8</td>
<td>9.9</td>
<td>11.3</td>
</tr>
<tr>
<td>Lancaster</td>
<td>89</td>
<td>8</td>
<td>11</td>
<td>9.0</td>
<td>12.4</td>
</tr>
<tr>
<td>Brighton and Hove</td>
<td>164</td>
<td>14</td>
<td>21</td>
<td>8.5</td>
<td>12.8</td>
</tr>
<tr>
<td>Waveney</td>
<td>73</td>
<td>5</td>
<td>6</td>
<td>6.8</td>
<td>8.2</td>
</tr>
<tr>
<td>East Lindsey</td>
<td>80</td>
<td>5</td>
<td>10</td>
<td>6.3</td>
<td>12.5</td>
</tr>
<tr>
<td>Bournemouth</td>
<td>107</td>
<td>6</td>
<td>13</td>
<td>5.6</td>
<td>12.1</td>
</tr>
<tr>
<td>Penwith</td>
<td>38</td>
<td>2</td>
<td>6</td>
<td>5.3</td>
<td>15.8</td>
</tr>
<tr>
<td>Southend-on-sea</td>
<td>107</td>
<td>5</td>
<td>13</td>
<td>4.7</td>
<td>12.1</td>
</tr>
<tr>
<td>Shepway</td>
<td>65</td>
<td>3</td>
<td>4</td>
<td>4.6</td>
<td>6.2</td>
</tr>
<tr>
<td>Torbay</td>
<td>89</td>
<td>4</td>
<td>8</td>
<td>4.5</td>
<td>9.0</td>
</tr>
<tr>
<td>Tendring</td>
<td>90</td>
<td>4</td>
<td>8</td>
<td>4.4</td>
<td>8.9</td>
</tr>
<tr>
<td>Wyre</td>
<td>69</td>
<td>3</td>
<td>8</td>
<td>4.3</td>
<td>11.6</td>
</tr>
<tr>
<td>North Somerset</td>
<td>124</td>
<td>5</td>
<td>7</td>
<td>4.0</td>
<td>5.6</td>
</tr>
<tr>
<td>North Devon</td>
<td>58</td>
<td>2</td>
<td>4</td>
<td>3.4</td>
<td>6.9</td>
</tr>
<tr>
<td>Restormel</td>
<td>64</td>
<td>2</td>
<td>5</td>
<td>3.1</td>
<td>7.8</td>
</tr>
<tr>
<td>Weymouth and Portland</td>
<td>39</td>
<td>1</td>
<td>6</td>
<td>2.6</td>
<td>15.4</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>59</td>
<td>1</td>
<td>5</td>
<td>1.7</td>
<td>8.5</td>
</tr>
<tr>
<td>Dover</td>
<td>67</td>
<td>1</td>
<td>3</td>
<td>1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Sedgemoor</td>
<td>68</td>
<td>1</td>
<td>4</td>
<td>1.5</td>
<td>5.9</td>
</tr>
<tr>
<td>Carrick</td>
<td>58</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6.9</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>89</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6.7</td>
</tr>
<tr>
<td>Arun</td>
<td>94</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6.4</td>
</tr>
<tr>
<td>Canterbury</td>
<td>90</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5.6</td>
</tr>
<tr>
<td>Teignbridge</td>
<td>84</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3.6</td>
</tr>
<tr>
<td>Fylde</td>
<td>51</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>Rother</td>
<td>58</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.7</td>
</tr>
<tr>
<td>Berwick-upon-Tweed</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Christchurch</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>East Devon</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Purbeck</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>West Somerset</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Seaside districts</td>
<td>3141</td>
<td>259</td>
<td>296</td>
<td>8.2</td>
<td>9.4</td>
</tr>
</tbody>
</table>

407
<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Resort n = 1686, 54%</td>
<td>Other n = 1455, 46%</td>
<td>Total 3,141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>χ²</td>
<td>Cramer’s V</td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>480</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>396.1</td>
<td>341.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>28.5%</td>
<td>17.7%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>609</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>572.2</td>
<td>493.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>36.1%</td>
<td>31.4%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>417</td>
<td>524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>505.1</td>
<td>435.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>24.7%</td>
<td>36.0%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>180</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>212.6</td>
<td>183.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>10.7%</td>
<td>14.8%</td>
</tr>
<tr>
<td>Rank of IMD score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>493</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>402.6</td>
<td>347.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>29.2%</td>
<td>17.7%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>605</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>582.4</td>
<td>502.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>35.9%</td>
<td>33.0%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>406</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>477.2</td>
<td>411.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>24.1%</td>
<td>33.2%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>182</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>223.8</td>
<td>193.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>10.8%</td>
<td>16.2%</td>
</tr>
<tr>
<td>Rank of IMD score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>519</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>412.8</td>
<td>356.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>30.8%</td>
<td>17.2%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>561</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>549.7</td>
<td>474.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>33.3%</td>
<td>31.8%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>410</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>484.7</td>
<td>418.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>24.3%</td>
<td>33.9%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>196</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>238.9</td>
<td>206.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>11.6%</td>
<td>17.1%</td>
</tr>
</tbody>
</table>
Table A54: Resort v Other – Income

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>Resort</th>
<th>Other</th>
<th>Total</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>493</td>
<td>261</td>
<td>754</td>
<td>125.6</td>
<td>.000***</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>404.7</td>
<td>349.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>29.2%</td>
<td>17.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>630</td>
<td>429</td>
<td>1059</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>568.4</td>
<td>490.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>37.4%</td>
<td>29.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>437</td>
<td>570</td>
<td>1007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>540.5</td>
<td>466.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.9%</td>
<td>39.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>126</td>
<td>195</td>
<td>321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>172.3</td>
<td>148.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>7.5%</td>
<td>13.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>460</td>
<td>252</td>
<td>712</td>
<td>117.6</td>
<td>.000***</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>382.2</td>
<td>329.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>27.3%</td>
<td>17.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>641</td>
<td>429</td>
<td>1070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>574.3</td>
<td>495.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>38.0%</td>
<td>29.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>431</td>
<td>527</td>
<td>958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>514.2</td>
<td>443.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.6%</td>
<td>36.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>154</td>
<td>247</td>
<td>401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>215.2</td>
<td>185.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>9.1%</td>
<td>17.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>481</td>
<td>261</td>
<td>742</td>
<td>130.4</td>
<td>.000***</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>398.3</td>
<td>343.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>28.5%</td>
<td>17.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>627</td>
<td>412</td>
<td>1039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>557.7</td>
<td>481.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>37.2%</td>
<td>28.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>426</td>
<td>526</td>
<td>952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>511.0</td>
<td>441.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.3%</td>
<td>36.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>152</td>
<td>256</td>
<td>408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>219.0</td>
<td>189.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>9.0%</td>
<td>17.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A55: Resort v Other – Employment

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>Resort</th>
<th>Other</th>
<th>Total</th>
<th>χ^2</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Employment score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>590</td>
<td>314</td>
<td>904</td>
<td>113.9</td>
<td>.190</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>485.2</td>
<td>418.8</td>
<td>28.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>35.0%</td>
<td>21.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>646</td>
<td>516</td>
<td>1162</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>623.7</td>
<td>538.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>38.3%</td>
<td>35.5%</td>
<td>37.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>363</td>
<td>476</td>
<td>839</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>450.4</td>
<td>388.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>21.5%</td>
<td>32.7%</td>
<td>26.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>87</td>
<td>149</td>
<td>236</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>126.7</td>
<td>109.3</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>5.2%</td>
<td>10.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Employment score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>590</td>
<td>300</td>
<td>890</td>
<td>139.7</td>
<td>.211</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>477.7</td>
<td>412.3</td>
<td>28.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>35.0%</td>
<td>20.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>612</td>
<td>476</td>
<td>1088</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>584.0</td>
<td>504.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>36.3%</td>
<td>32.7%</td>
<td>34.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>389</td>
<td>485</td>
<td>874</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>469.1</td>
<td>404.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>23.1%</td>
<td>33.3%</td>
<td>27.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>95</td>
<td>194</td>
<td>289</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>155.1</td>
<td>133.9</td>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>5.6%</td>
<td>13.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Employment score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>624</td>
<td>311</td>
<td>935</td>
<td>146.8</td>
<td>.216</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>501.9</td>
<td>433.1</td>
<td>29.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>37.0%</td>
<td>21.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>563</td>
<td>447</td>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>542.1</td>
<td>467.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>33.4%</td>
<td>30.7%</td>
<td>32.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>400</td>
<td>496</td>
<td>896</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>480.9</td>
<td>415.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>23.7%</td>
<td>34.1%</td>
<td>28.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>99</td>
<td>201</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>161.0</td>
<td>139.0</td>
<td>9.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>5.9%</td>
<td>13.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A56: Resort v Other – Health

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>Resort n = 1686, 54%</th>
<th>Other n = 1455, 46%</th>
<th>Total 3,141</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Health and Disability score, 2004</td>
<td>MD Observed</td>
<td>489</td>
<td>261</td>
<td>750</td>
<td>156.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>402.6</td>
<td>347.4</td>
<td>739</td>
<td>156.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>29.0%</td>
<td>17.9%</td>
<td>39.5%</td>
<td>25.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>AA Observed</td>
<td>669</td>
<td>452</td>
<td>1121</td>
<td>104.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>601.7</td>
<td>519.3</td>
<td>1121</td>
<td>104.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>39.7%</td>
<td>31.1%</td>
<td>40.8%</td>
<td>31.2</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>BA Observed</td>
<td>461</td>
<td>563</td>
<td>1024</td>
<td>82.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>549.7</td>
<td>474.3</td>
<td>1024</td>
<td>82.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.3%</td>
<td>38.7%</td>
<td>32.6%</td>
<td>32.6</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>LD Observed</td>
<td>47</td>
<td>179</td>
<td>226</td>
<td>10.4</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>132.0</td>
<td>114.0</td>
<td>246</td>
<td>10.4</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>4.0%</td>
<td>12.3%</td>
<td>7.8%</td>
<td>7.8</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td>Rank of Health and Disability score, 2007</td>
<td>MD Observed</td>
<td>539</td>
<td>264</td>
<td>803</td>
<td>201.9</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>431.0</td>
<td>372.0</td>
<td>803</td>
<td>201.9</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>32.0%</td>
<td>18.1%</td>
<td>40.1%</td>
<td>26.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>AA Observed</td>
<td>667</td>
<td>445</td>
<td>1112</td>
<td>163.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>596.9</td>
<td>515.1</td>
<td>1112</td>
<td>163.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>39.6%</td>
<td>30.6%</td>
<td>34.5%</td>
<td>34.5</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>BA Observed</td>
<td>407</td>
<td>546</td>
<td>953</td>
<td>115.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>511.5</td>
<td>441.5</td>
<td>953</td>
<td>115.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>24.1%</td>
<td>37.5%</td>
<td>30.3%</td>
<td>30.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>LD Observed</td>
<td>73</td>
<td>200</td>
<td>773</td>
<td>22.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>146.5</td>
<td>126.5</td>
<td>273</td>
<td>22.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>4.3%</td>
<td>13.7%</td>
<td>8.7%</td>
<td>8.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td>Rank of Health and Disability score, 2010</td>
<td>MD Observed</td>
<td>602</td>
<td>270</td>
<td>872</td>
<td>235.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>468.1</td>
<td>403.9</td>
<td>872</td>
<td>235.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>35.7%</td>
<td>18.6%</td>
<td>27.8%</td>
<td>27.8</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>AA Observed</td>
<td>635</td>
<td>440</td>
<td>1075</td>
<td>128.9</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>577.0</td>
<td>498.0</td>
<td>1075</td>
<td>128.9</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>37.3%</td>
<td>30.2%</td>
<td>34.2%</td>
<td>34.2</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>BA Observed</td>
<td>497</td>
<td>544</td>
<td>941</td>
<td>91.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>493.3</td>
<td>425.7</td>
<td>941</td>
<td>91.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>22.2%</td>
<td>37.4%</td>
<td>29.3%</td>
<td>29.3</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>LD Observed</td>
<td>74</td>
<td>201</td>
<td>275</td>
<td>10.4</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>147.8</td>
<td>127.4</td>
<td>275</td>
<td>10.4</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>4.4%</td>
<td>13.8%</td>
<td>8.8%</td>
<td>8.8</td>
<td>3</td>
<td>.000***</td>
</tr>
</tbody>
</table>
Table A57: Resort v Other – Education

<table>
<thead>
<tr>
<th>Deprivation measure, Skills and Training score, 2004</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>Resort n = 1686, 54%</th>
<th>Other n = 1455, 46%</th>
<th>Total n = 3,141</th>
<th>(\chi^2)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Education, Skills and Training score, 2004</td>
<td>MD Observed</td>
<td>428</td>
<td>279</td>
<td></td>
<td>707</td>
<td>25.5</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>379.5</td>
<td>327.5</td>
<td>19.2%</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA Observed</td>
<td>527</td>
<td>431</td>
<td></td>
<td>958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>514.2</td>
<td>443.6</td>
<td>29.6%</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA Observed</td>
<td>461</td>
<td>449</td>
<td></td>
<td>910</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>488.5</td>
<td>421.5</td>
<td>30.9%</td>
<td>29.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD Observed</td>
<td>270</td>
<td>296</td>
<td></td>
<td>566</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>303.8</td>
<td>262.2</td>
<td>20.3%</td>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Education, Skills and Training score, 2007</td>
<td>MD Observed</td>
<td>439</td>
<td>297</td>
<td></td>
<td>736</td>
<td>21.7</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>395.1</td>
<td>340.9</td>
<td>20.4%</td>
<td>23.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA Observed</td>
<td>555</td>
<td>453</td>
<td></td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>541.1</td>
<td>466.9</td>
<td>31.1%</td>
<td>32.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA Observed</td>
<td>430</td>
<td>422</td>
<td></td>
<td>852</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>457.3</td>
<td>394.7</td>
<td>29.0%</td>
<td>27.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD Observed</td>
<td>262</td>
<td>283</td>
<td></td>
<td>545</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>292.5</td>
<td>252.5</td>
<td>19.5%</td>
<td>17.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Education, Skills and Training score, 2010</td>
<td>MD Observed</td>
<td>474</td>
<td>305</td>
<td></td>
<td>779</td>
<td>30.9</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>418.1</td>
<td>360.9</td>
<td>21.0%</td>
<td>24.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA Observed</td>
<td>525</td>
<td>433</td>
<td></td>
<td>958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>514.2</td>
<td>443.8</td>
<td>29.8%</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA Observed</td>
<td>410</td>
<td>452</td>
<td></td>
<td>862</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>462.7</td>
<td>399.3</td>
<td>31.1%</td>
<td>27.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD Observed</td>
<td>277</td>
<td>265</td>
<td></td>
<td>542</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected % within LSOA t.</td>
<td>290.9</td>
<td>251.1</td>
<td>18.2%</td>
<td>17.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A58: Resort v Other – Housing

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ²</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Resort</td>
<td>Other</td>
<td>Total 3,141</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n = 1686, 54%</td>
<td>n = 1455, 46%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Barriers to Housing and Services score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>366</td>
<td>440.7</td>
<td>821</td>
<td>42.4</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>455</td>
<td>380.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>21.7%</td>
<td>31.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>368</td>
<td>371.4</td>
<td>692</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>324</td>
<td>320.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>21.8%</td>
<td>22.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>409</td>
<td>374.7</td>
<td>698</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>289</td>
<td>323.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>24.3%</td>
<td>19.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>543</td>
<td>499.2</td>
<td>930</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>387</td>
<td>430.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>32.2%</td>
<td>26.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Barriers to Housing and Services score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>283</td>
<td>398.8</td>
<td>743</td>
<td>107.8</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>460</td>
<td>344.2</td>
<td></td>
<td>.185</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>16.8%</td>
<td>31.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>523</td>
<td>460.0</td>
<td>857</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>334</td>
<td>397.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>31.0%</td>
<td>23.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>497</td>
<td>439.1</td>
<td>818</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>321</td>
<td>378.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>29.5%</td>
<td>22.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>383</td>
<td>388.1</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>340</td>
<td>334.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>22.7%</td>
<td>23.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Barriers to Housing and Services score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>304</td>
<td>401.5</td>
<td>748</td>
<td>93.9</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>444</td>
<td>346.5</td>
<td></td>
<td>.173</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>18.0%</td>
<td>30.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>512</td>
<td>464.8</td>
<td>866</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>354</td>
<td>401.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>30.4%</td>
<td>24.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>529</td>
<td>452.0</td>
<td>842</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>313</td>
<td>390.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>31.4%</td>
<td>21.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>341</td>
<td>367.7</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>344</td>
<td>317.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>20.2%</td>
<td>23.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

413
Table A59: Resort v Other – Crime

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ^2</th>
<th>Cramer's V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Resort n = 1686, 54%</td>
<td>Other n = 1455, 46%</td>
<td>Total n = 3,141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2004</td>
<td>MD</td>
<td>Observed 288 24.9 17.1</td>
<td>Expected 131 194.1 9.0</td>
<td>419</td>
<td>187.7</td>
<td>.244</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 9.3 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 476 237</td>
<td>Expected 382.7 330.3</td>
<td>713</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 28.2 16.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 523 442</td>
<td>Expected 518.0 447.0</td>
<td>965</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 31.0 30.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 399 645</td>
<td>Expected 560.4 483.6</td>
<td>1044</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 23.7 44.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2007</td>
<td>MD</td>
<td>Observed 350 158</td>
<td>Expected 272.7 235.3</td>
<td>508</td>
<td>240.6</td>
<td>.277</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 20.8 10.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 511 255</td>
<td>Expected 411.2 354.8</td>
<td>766</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 30.3 17.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 485 404</td>
<td>Expected 477.2 411.8</td>
<td>889</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 28.8 27.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 340 638</td>
<td>Expected 525.0 453.0</td>
<td>978</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 20.2 43.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2010</td>
<td>MD</td>
<td>Observed 337 114</td>
<td>Expected 242.1 208.9</td>
<td>451</td>
<td>278.6</td>
<td>.298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 20.0 7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 442 224</td>
<td>Expected 357.5 308.5</td>
<td>666</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 26.2 15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 501 380</td>
<td>Expected 472.9 408.1</td>
<td>881</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 29.7 26.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 406 737</td>
<td>Expected 613.5 529.5</td>
<td>1143</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t. 24.1 50.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

414
Table A60: Resort v Other – Environment

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>Resort n = 1686, 54%</th>
<th>Other n = 1455, 46%</th>
<th>Total n = 3141</th>
<th>χ^2</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Living Environment score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>536</td>
<td>319</td>
<td>855</td>
<td>43.0</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>458.9</td>
<td>396.1</td>
<td>72.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>31.8%</td>
<td>21.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>433</td>
<td>379</td>
<td>812</td>
<td>751</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>435.9</td>
<td>376.1</td>
<td>25.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.7%</td>
<td>26.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>366</td>
<td>385</td>
<td>723</td>
<td>3</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>403.1</td>
<td>347.9</td>
<td>23.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>21.7%</td>
<td>26.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>351</td>
<td>372</td>
<td>723</td>
<td>728</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>388.1</td>
<td>334.9</td>
<td>23.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>20.8%</td>
<td>25.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Living Environment score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>575</td>
<td>376</td>
<td>951</td>
<td>33.1</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>510.5</td>
<td>440.5</td>
<td>30.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>34.1%</td>
<td>25.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>465</td>
<td>396</td>
<td>861</td>
<td>861</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>462.2</td>
<td>398.8</td>
<td>27.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.6%</td>
<td>27.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>366</td>
<td>362</td>
<td>728</td>
<td>728</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>390.8</td>
<td>337.2</td>
<td>23.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>21.7%</td>
<td>24.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>280</td>
<td>321</td>
<td>601</td>
<td>601</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>322.6</td>
<td>278.4</td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>16.6%</td>
<td>22.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Living Environment score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>586</td>
<td>393</td>
<td>979</td>
<td>29.0</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>525.5</td>
<td>453.5</td>
<td>31.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>33.8%</td>
<td>27.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>435</td>
<td>361</td>
<td>796</td>
<td>796</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>427.3</td>
<td>368.7</td>
<td>25.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.8%</td>
<td>24.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>359</td>
<td>375</td>
<td>734</td>
<td>734</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>394.0</td>
<td>340.0</td>
<td>23.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>21.3%</td>
<td>25.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>308</td>
<td>326</td>
<td>632</td>
<td>632</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>339.2</td>
<td>292.8</td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>18.1%</td>
<td>22.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A61: Comparing ID 2004 to ID 2010: ‘resort’ LSOAs in national quartiles

a) Income

<table>
<thead>
<tr>
<th>ID2004</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>434</td>
</tr>
<tr>
<td>AA</td>
<td>59</td>
</tr>
<tr>
<td>BA</td>
<td>83</td>
</tr>
<tr>
<td>LD</td>
<td>54</td>
</tr>
</tbody>
</table>

b) Living Environment

<table>
<thead>
<tr>
<th>ID2004</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>482</td>
</tr>
<tr>
<td>AA</td>
<td>54</td>
</tr>
<tr>
<td>BA</td>
<td>47</td>
</tr>
<tr>
<td>LD</td>
<td>47</td>
</tr>
</tbody>
</table>

Number of LSOAs that are:
- getting worse: 143 (8.50%)
- getting better: 196 (11.60%)
- similar (same quartile): 1347 (79.90%)

c) Employment

<table>
<thead>
<tr>
<th>ID2004</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>532</td>
</tr>
<tr>
<td>AA</td>
<td>56</td>
</tr>
<tr>
<td>BA</td>
<td>2</td>
</tr>
<tr>
<td>LD</td>
<td>2</td>
</tr>
</tbody>
</table>

d) Barriers to Housing and Services

<table>
<thead>
<tr>
<th>ID2004</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>193</td>
</tr>
<tr>
<td>AA</td>
<td>161</td>
</tr>
<tr>
<td>BA</td>
<td>12</td>
</tr>
<tr>
<td>LD</td>
<td>11</td>
</tr>
</tbody>
</table>

Number of LSOAs that are:
- getting worse: 179 (10.60%)
- getting better: 204 (12.10%)
- similar (same quartile): 1303 (77.30%)

e) Health and disability

<table>
<thead>
<tr>
<th>ID2004</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>430</td>
</tr>
<tr>
<td>AA</td>
<td>58</td>
</tr>
<tr>
<td>BA</td>
<td>1</td>
</tr>
<tr>
<td>LD</td>
<td>2</td>
</tr>
</tbody>
</table>

f) Education, skills and training

<table>
<thead>
<tr>
<th>ID2004</th>
<th>ID2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>386</td>
</tr>
<tr>
<td>AA</td>
<td>42</td>
</tr>
<tr>
<td>BA</td>
<td>52</td>
</tr>
<tr>
<td>LD</td>
<td>1</td>
</tr>
</tbody>
</table>

Number of LSOAs that are:
- getting worse: 358 (21.20%)
- getting better: 175 (10.40%)
- similar (same quartile): 1153 (68.40%)

...
g) Crime

<table>
<thead>
<tr>
<th></th>
<th>ID2004</th>
<th>ID2010 MD</th>
<th>AA</th>
<th>BA</th>
<th>LD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td></td>
<td>201</td>
<td>124</td>
<td>12</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td>75</td>
<td>212</td>
<td>137</td>
<td>18</td>
<td>442</td>
</tr>
<tr>
<td>BA</td>
<td></td>
<td>11</td>
<td>121</td>
<td>259</td>
<td>410</td>
<td>501</td>
</tr>
<tr>
<td>LD</td>
<td></td>
<td>1</td>
<td>19</td>
<td>115</td>
<td>271</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td></td>
<td>288</td>
<td>476</td>
<td>523</td>
<td>399</td>
<td>1686</td>
</tr>
</tbody>
</table>

Number of LSOAs that are:
- getting worse: 288 (17.89%)
- getting better: 401 (23.80%)
- similar (same quartile): 943 (55.90%)

h) Index of Multiple Deprivation

<table>
<thead>
<tr>
<th></th>
<th>ID2004</th>
<th>ID2010 MD</th>
<th>AA</th>
<th>BA</th>
<th>LD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td></td>
<td>448</td>
<td>71</td>
<td></td>
<td></td>
<td>519</td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td>32</td>
<td>478</td>
<td>51</td>
<td></td>
<td>561</td>
</tr>
<tr>
<td>BA</td>
<td></td>
<td>60</td>
<td>311</td>
<td>39</td>
<td></td>
<td>410</td>
</tr>
<tr>
<td>LD</td>
<td></td>
<td>55</td>
<td>141</td>
<td></td>
<td></td>
<td>196</td>
</tr>
<tr>
<td></td>
<td></td>
<td>480</td>
<td>609</td>
<td>417</td>
<td>180</td>
<td>1686</td>
</tr>
</tbody>
</table>

Number of LSOAs that are:
- getting worse: 480 (29.10%)
- getting better: 609 (36.70%)
- similar (same quartile): 943 (55.90%)

1686
Table A62: Resort LSOAs by deprivation decile – 2004, 2007, and 2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10% - (most deprived 10% in England)</td>
<td>8.8</td>
<td>10.1</td>
<td>12.3</td>
</tr>
<tr>
<td>20%</td>
<td>12.7</td>
<td>11.7</td>
<td>11.4</td>
</tr>
<tr>
<td>30%</td>
<td>14.8</td>
<td>15.2</td>
<td>14.8</td>
</tr>
<tr>
<td>40%</td>
<td>15.4</td>
<td>14.4</td>
<td>13.8</td>
</tr>
<tr>
<td>50%</td>
<td>12.9</td>
<td>13.7</td>
<td>11.9</td>
</tr>
<tr>
<td>60%</td>
<td>11.6</td>
<td>11</td>
<td>11.1</td>
</tr>
<tr>
<td>70%</td>
<td>9</td>
<td>9.5</td>
<td>9</td>
</tr>
<tr>
<td>80%</td>
<td>8.4</td>
<td>7.4</td>
<td>7.8</td>
</tr>
<tr>
<td>90%</td>
<td>4.7</td>
<td>5.3</td>
<td>6</td>
</tr>
<tr>
<td>100% (least deprived 10% in England)</td>
<td>1.7</td>
<td>1.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Figure A1: IMD / Income deprivation relationship (resort LSOAs) $r = 0.96$

Figure A2: IMD / Employment deprivation relationship (resort LSOAs) $r = 0.95$

1 = Most deprived – 1686 = Least deprived
Figure A3: IMD / Health deprivation relationship (resort LSOAs) $r = 0.88$

1 = Most deprived – 1686 = Least deprived

Figure A4: IMD / Education deprivation relationship (resort LSOAs) $r = 0.78$

1 = Most deprived – 1686 = Least deprived
Figure A5: IMD / Crime deprivation relationship (resort LSOAs) $r = 0.74$

Figure A6: IMD / Living environment deprivation relationship (resort LSOAs) $r = 0.63$
Figure A7: IMD / Housing and services deprivation relationship (resort LSOAs) $r = 0.24$

I = Most deprived – 1686 = Least deprived
Table A63: Large v Medium-sized resorts – Overall Index of M.D.

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ^2</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>df</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>384</td>
<td>696</td>
<td>480</td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>351.6</td>
<td>128.4</td>
<td>21.3%</td>
<td>.118</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>31.1%</td>
<td>28.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>450</td>
<td>159</td>
<td>609</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>446.1</td>
<td>162.9</td>
<td>35.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>36.4%</td>
<td>36.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>257</td>
<td>119</td>
<td>376</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>275.4</td>
<td>100.6</td>
<td>26.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>20.8%</td>
<td>22.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>144</td>
<td>77</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>161.9</td>
<td>59.1</td>
<td>17.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>11.7%</td>
<td>13.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>398</td>
<td>95</td>
<td>493</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>361.1</td>
<td>131.9</td>
<td>21.1%</td>
<td>.122</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>32.2%</td>
<td>29.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>441</td>
<td>164</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>443.2</td>
<td>161.8</td>
<td>36.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>35.7%</td>
<td>35.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>277</td>
<td>129</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>297.4</td>
<td>108.6</td>
<td>28.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>22.4%</td>
<td>24.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>119</td>
<td>63</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>133.3</td>
<td>48.7</td>
<td>14.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>9.6%</td>
<td>10.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of IMD score, 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>417</td>
<td>102</td>
<td>519</td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>380.2</td>
<td>138.8</td>
<td>22.6%</td>
<td>.120</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>33.8%</td>
<td>30.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>410</td>
<td>151</td>
<td>561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>410.9</td>
<td>150.1</td>
<td>33.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>33.2%</td>
<td>33.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>277</td>
<td>133</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>300.3</td>
<td>109.7</td>
<td>29.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>22.4%</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Observed</td>
<td>Large n = 1235, 54%</td>
<td>131</td>
<td>65</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>Medium n = 451, 46%</td>
<td>143.6</td>
<td>52.4</td>
<td>14.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td></td>
<td>10.6%</td>
<td>11.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A64: Large v Medium-sized resorts – Income

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>(\chi^2)</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Income score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>387</td>
<td>107</td>
<td>494</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>361.9</td>
<td>132.1</td>
<td>762</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>31.3%</td>
<td>23.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>456</td>
<td>173</td>
<td>629</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>460.7</td>
<td>168.3</td>
<td>24.0</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>36.9%</td>
<td>38.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>278</td>
<td>126</td>
<td>404</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>295.9</td>
<td>108.1</td>
<td>24.0</td>
<td>27.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>22.5%</td>
<td>27.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>114</td>
<td>45</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>116.5</td>
<td>42.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>9.2%</td>
<td>10.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Income score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>370</td>
<td>90</td>
<td>460</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>337.0</td>
<td>123.0</td>
<td>762</td>
<td>20.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>30.0%</td>
<td>20.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>466</td>
<td>175</td>
<td>641</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>469.5</td>
<td>171.5</td>
<td>24.0</td>
<td>38.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>37.7%</td>
<td>38.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>290</td>
<td>141</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>315.7</td>
<td>115.3</td>
<td>25.6</td>
<td>31.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>23.5%</td>
<td>31.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>109</td>
<td>45</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>112.8</td>
<td>41.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>8.8%</td>
<td>10.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Income score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>387</td>
<td>94</td>
<td>481</td>
<td>27.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>352.3</td>
<td>481.0</td>
<td>28.5</td>
<td>28.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>31.3%</td>
<td>28.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>460</td>
<td>167</td>
<td>627</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>459.3</td>
<td>167.7</td>
<td>37.2</td>
<td>37.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>37.2%</td>
<td>37.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>312.0</td>
<td>114.0</td>
<td>426</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>312.0</td>
<td>114.0</td>
<td>25.3</td>
<td>33.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>22.4%</td>
<td>33.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>111</td>
<td>41</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
<td>111.3</td>
<td>40.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within LSOA t.</td>
<td>9.0%</td>
<td>9.1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A65: Large v Medium-sized resorts – Employment

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ^2</th>
<th>Cramer’s V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Large n = 1,235, 54%</td>
<td>Medium n = 451, 46%</td>
<td>Total n = 1,686</td>
</tr>
<tr>
<td></td>
<td></td>
<td>χ²</td>
<td>df</td>
<td>p</td>
</tr>
<tr>
<td>Rank of Employment score, 2004</td>
<td>MD</td>
<td>Observed 453</td>
<td>Expected 432.2</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 453</td>
<td>Expected 473.2</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 266</td>
<td>Expected 265.9</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 63</td>
<td>Expected 63.7</td>
<td>24</td>
</tr>
<tr>
<td>Rank of Employment score, 2007</td>
<td>MD</td>
<td>Observed 452</td>
<td>Expected 432.2</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 444</td>
<td>Expected 448.3</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 270</td>
<td>Expected 284.9</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 69</td>
<td>Expected 69.6</td>
<td>26</td>
</tr>
<tr>
<td>Rank of Employment score, 2010</td>
<td>MD</td>
<td>Observed 484</td>
<td>Expected 457.1</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 408</td>
<td>Expected 412.4</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 272</td>
<td>Expected 293.0</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 71</td>
<td>Expected 72.5</td>
<td>28</td>
</tr>
</tbody>
</table>

425
Table A66: Large v Medium-sized resorts – Health

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ²</th>
<th>Cramer’s V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Large n = 1235, 54%</td>
<td>Medium n = 451, 46%</td>
<td>Total 1,686</td>
</tr>
<tr>
<td>Rank of Health and disability score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>397</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>358.2</td>
<td>130.8</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>32.1%</td>
<td>20.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>481</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>490.0</td>
<td>179.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>38.9%</td>
<td>41.7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>316</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>337.7</td>
<td>123.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>25.6%</td>
<td>32.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>49.1</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>3.3%</td>
<td>5.8%</td>
<td></td>
</tr>
<tr>
<td>Rank of Health and disability score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>439</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>394.8</td>
<td>144.2</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>35.5%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>483</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>488.6</td>
<td>178.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>39.1%</td>
<td>40.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>270</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>298.1</td>
<td>108.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>21.9%</td>
<td>30.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>43</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>53.5</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>3.5%</td>
<td>6.7%</td>
<td></td>
</tr>
<tr>
<td>Rank of Health and disability score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>491</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>441.0</td>
<td>161.0</td>
<td>35.7</td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>39.8%</td>
<td>24.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>465</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>465.1</td>
<td>169.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>37.7%</td>
<td>37.7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>233</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>274.7</td>
<td>375.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>18.9%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>46</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>54.2</td>
<td>74.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>3.7%</td>
<td>4.4%</td>
<td></td>
</tr>
</tbody>
</table>
Table A67: Large v Medium-sized resorts – Education

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>(\chi^2)</th>
<th>(\text{Cramer's V})</th>
<th>df</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Education, Skills and Training score, 2004</td>
<td>Large n = 1235, 54%</td>
<td>Medium n = 451, 46%</td>
<td>Total 1,686</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD Observed</td>
<td>341</td>
<td>87</td>
<td>428</td>
<td>15.1</td>
<td>3</td>
<td>.002**</td>
</tr>
<tr>
<td>Expected</td>
<td>313.5</td>
<td>114.5</td>
<td>25.4</td>
<td>.095</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>27.6%</td>
<td>19.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA Observed</td>
<td>367</td>
<td>160</td>
<td>527</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>386.0</td>
<td>141.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>29.7%</td>
<td>35.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA Observed</td>
<td>324</td>
<td>137</td>
<td>461</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>337.7</td>
<td>123.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>26.2%</td>
<td>30.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD Observed</td>
<td>203</td>
<td>67</td>
<td>270</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>197.8</td>
<td>72.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>16.4%</td>
<td>14.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Education, Skills and Training score, 2007</td>
<td>Large n = 1235, 54%</td>
<td>Medium n = 451, 46%</td>
<td>Total 1,686</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD Observed</td>
<td>344</td>
<td>95</td>
<td>439</td>
<td>14.9</td>
<td>3</td>
<td>.002**</td>
</tr>
<tr>
<td>Expected</td>
<td>32.6</td>
<td>117.4</td>
<td>26.0</td>
<td>.094</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>27.9%</td>
<td>21.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA Observed</td>
<td>397</td>
<td>158</td>
<td>555</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>406.5</td>
<td>148.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>32.1%</td>
<td>35.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA Observed</td>
<td>292</td>
<td>138</td>
<td>430</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>315.0</td>
<td>115.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>23.6%</td>
<td>30.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD Observed</td>
<td>202</td>
<td>60</td>
<td>262</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>191.9</td>
<td>70.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>16.4%</td>
<td>13.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Education, Skills and Training score, 2010</td>
<td>Large n = 1235, 54%</td>
<td>Medium n = 451, 46%</td>
<td>Total 1,686</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD Observed</td>
<td>375</td>
<td>99</td>
<td>474</td>
<td>18.9</td>
<td>3</td>
<td>.000***</td>
</tr>
<tr>
<td>Expected</td>
<td>347.2</td>
<td>126.8</td>
<td>28.1</td>
<td>.106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>30.4%</td>
<td>22.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA Observed</td>
<td>361</td>
<td>164</td>
<td>525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>384.6</td>
<td>140.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>29.2%</td>
<td>36.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA Observed</td>
<td>285</td>
<td>125</td>
<td>410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>300.3</td>
<td>109.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>23.1%</td>
<td>27.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD Observed</td>
<td>214</td>
<td>63</td>
<td>277</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>202.9</td>
<td>74.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within LSOA t.</td>
<td>17.3%</td>
<td>14.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deprivation measure</td>
<td>Deprivation level</td>
<td>LSOA type</td>
<td>χ^2</td>
<td>Cramer’s V</td>
<td>df</td>
<td>p</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large n = 1235, 54%</td>
<td>Medium n = 451, 46%</td>
<td>Total n = 1686</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Barriers to Housing and Services score, 2004</td>
<td>MD</td>
<td>Observed 308</td>
<td>Expected 268.1</td>
<td>24.9%</td>
<td>97.9</td>
<td>12.9%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 273</td>
<td>Expected 269.6</td>
<td>22.1%</td>
<td>98.4</td>
<td>21.1%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 267</td>
<td>Expected 299.6</td>
<td>21.6%</td>
<td>109.4</td>
<td>31.5%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 387</td>
<td>Expected 397.7</td>
<td>31.3%</td>
<td>145.3</td>
<td>34.6%</td>
</tr>
<tr>
<td>Rank of Barriers to Housing and Services score, 2007</td>
<td>MD</td>
<td>Observed 195</td>
<td>Expected 207.3</td>
<td>15.8%</td>
<td>75.7</td>
<td>19.5%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 415</td>
<td>Expected 383.1</td>
<td>33.6%</td>
<td>139.9</td>
<td>23.9%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 372</td>
<td>Expected 364.1</td>
<td>30.1%</td>
<td>132.9</td>
<td>27.7%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 253</td>
<td>Expected 280.5</td>
<td>20.5%</td>
<td>102.5</td>
<td>28.8%</td>
</tr>
<tr>
<td>Rank of Barriers to Housing and Services score, 2010</td>
<td>MD</td>
<td>Observed 235</td>
<td>Expected 222.7</td>
<td>19.0%</td>
<td>81.3</td>
<td>15.3%</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed 397</td>
<td>Expected 375.0</td>
<td>32.1%</td>
<td>137.0</td>
<td>25.5%</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed 385</td>
<td>Expected 387.5</td>
<td>31.2%</td>
<td>141.5</td>
<td>31.9%</td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed 218</td>
<td>Expected 249.8</td>
<td>17.7%</td>
<td>91.2</td>
<td>27.3%</td>
</tr>
</tbody>
</table>
Table A69: Large v Medium-sized resorts – Crime

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>χ²</th>
<th>Cramer’s V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Large</td>
<td>Medium</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n = 1235, 54%</td>
<td>n = 451, 46%</td>
<td>1,686</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2004</td>
<td>MD</td>
<td>Observed</td>
<td>245</td>
<td>43</td>
<td>288</td>
<td>90.1</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>211.0</td>
<td>77.0</td>
<td>17.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>19.8%</td>
<td>9.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>390</td>
<td>86</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>348.7</td>
<td>127.3</td>
<td>19.1%</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>31.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>370</td>
<td>153</td>
<td>523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>383.1</td>
<td>139.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>30.0%</td>
<td>33.9%</td>
<td>31.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>230</td>
<td>169</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>292.3</td>
<td>106.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>18.6%</td>
<td>37.5%</td>
<td>23.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2007</td>
<td>MD</td>
<td>Observed</td>
<td>299</td>
<td>51</td>
<td>350</td>
<td>131.4</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>256.4</td>
<td>93.6</td>
<td>11.3%</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>24.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>418</td>
<td>93</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>374.3</td>
<td>136.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>33.8%</td>
<td>20.6%</td>
<td>30.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>344</td>
<td>141</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>355.3</td>
<td>129.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>27.9%</td>
<td>31.3%</td>
<td>28.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>174</td>
<td>166</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>249.1</td>
<td>90.9</td>
<td>36.8%</td>
<td>20.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>14.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Crime score, 2010</td>
<td>MD</td>
<td>Observed</td>
<td>276</td>
<td>61</td>
<td>337</td>
<td>52.3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>246.9</td>
<td>90.1</td>
<td>13.5%</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>22.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Observed</td>
<td>352</td>
<td>90</td>
<td>442</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>323.8</td>
<td>118.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>28.5%</td>
<td>20.0%</td>
<td>26.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>Observed</td>
<td>358</td>
<td>143</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>367.0</td>
<td>134.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>29.0%</td>
<td>31.7%</td>
<td>29.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD</td>
<td>Observed</td>
<td>249</td>
<td>157</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>297.4</td>
<td>108.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within LSOA t.</td>
<td>20.2%</td>
<td>34.8%</td>
<td>24.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A70: Large v Medium-sized resorts – Environment

<table>
<thead>
<tr>
<th>Deprivation measure</th>
<th>Deprivation level</th>
<th>LSOA type</th>
<th>(\chi^2)</th>
<th>Cramer's V</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Large n = 1235, 54%</td>
<td>Medium n = 451, 46%</td>
<td>Total n = 1686</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank of Living Environment score, 2004</td>
<td>MD Observed Expected % within LSOA t.</td>
<td>419</td>
<td>392.6</td>
<td>33.9%</td>
<td>117</td>
<td>143.4</td>
</tr>
<tr>
<td></td>
<td>AA Observed Expected % within LSOA t.</td>
<td>317</td>
<td>317.2</td>
<td>25.7%</td>
<td>116</td>
<td>115.8</td>
</tr>
<tr>
<td></td>
<td>BA Observed Expected % within LSOA t.</td>
<td>251</td>
<td>268.1</td>
<td>20.3%</td>
<td>115</td>
<td>97.9</td>
</tr>
<tr>
<td></td>
<td>LD Observed Expected % within LSOA t.</td>
<td>248</td>
<td>257.1</td>
<td>20.1%</td>
<td>103</td>
<td>93.9</td>
</tr>
<tr>
<td>Rank of Living Environment score, 2007</td>
<td>MD Observed Expected % within LSOA t.</td>
<td>458</td>
<td>421.2</td>
<td>37.1%</td>
<td>117</td>
<td>153.8</td>
</tr>
<tr>
<td></td>
<td>AA Observed Expected % within LSOA t.</td>
<td>339</td>
<td>340.6</td>
<td>27.4%</td>
<td>126</td>
<td>124.4</td>
</tr>
<tr>
<td></td>
<td>BA Observed Expected % within LSOA t.</td>
<td>259</td>
<td>268.1</td>
<td>21.0%</td>
<td>107</td>
<td>97.9</td>
</tr>
<tr>
<td></td>
<td>LD Observed Expected % within LSOA t.</td>
<td>179</td>
<td>205.1</td>
<td>14.5%</td>
<td>101</td>
<td>74.9</td>
</tr>
<tr>
<td>Rank of Living Environment score, 2010</td>
<td>MD Observed Expected % within LSOA t.</td>
<td>457</td>
<td>429.2</td>
<td>37.0%</td>
<td>117</td>
<td>156.8</td>
</tr>
<tr>
<td></td>
<td>AA Observed Expected % within LSOA t.</td>
<td>325</td>
<td>318.6</td>
<td>26.3%</td>
<td>110</td>
<td>116.4</td>
</tr>
<tr>
<td></td>
<td>BA Observed Expected % within LSOA t.</td>
<td>254</td>
<td>261.5</td>
<td>20.6%</td>
<td>103</td>
<td>95.5</td>
</tr>
<tr>
<td></td>
<td>LD Observed Expected % within LSOA t.</td>
<td>199</td>
<td>225.6</td>
<td>16.1%</td>
<td>109</td>
<td>82.4</td>
</tr>
<tr>
<td>Deprivation level</td>
<td>Very deprived (Rank 1-8,120)</td>
<td>Above average (Rank 8,121-16,241)</td>
<td>Below average (Rank 16,242-24,362)</td>
<td>Least deprived (Rank 24,363-32,482)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>------------------------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple deprivation</td>
<td>Skegness 6,985 M</td>
<td>Dover 8,385 M</td>
<td>Deal 16,456 M</td>
<td>Formby 25,405 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blackpool 7,154 L</td>
<td>Margate 8,658 L</td>
<td>Southport 16,557 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Great Yarmouth 8,840 L</td>
<td>Hastings 8,854 L</td>
<td>Hythe 16,672 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clacton-on-Sea 8,915 M</td>
<td>Ilfracombe 8,942 M</td>
<td>Crosby 16,728 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Brighton 9,116 M</td>
<td>Bognor Regis 9,285 M</td>
<td>Broadstairs 18,505 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ramsgate 9,556 L</td>
<td>Fleetwood 10,068 M</td>
<td>Exmouth 18,511 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scarborough 10,254 L</td>
<td>South Shields 10,140 L</td>
<td>Thorton-Cleveleys 19,470 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folkestone 11,016 M</td>
<td>Torquay 10,601 L</td>
<td>Sidmouth 23,549 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heysham 11,128 M</td>
<td>Folkestone 11,016 M</td>
<td>West Kirby 23,717 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Littlehampton 11,639 M</td>
<td>Folkestone 11,016 M</td>
<td>West Kirby 23,717 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morecambe 11,884 M</td>
<td>Minehead 11,854 M</td>
<td>West Kirby 23,717 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minehead 11,984 M</td>
<td>Lowestoft 12,045 L</td>
<td>West Kirby 23,717 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lowestoft 12,045 L</td>
<td>Eastbourne 12,474 L</td>
<td>West Kirby 23,717 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eastbourne 12,474 L</td>
<td>Brighton 12,477 L</td>
<td>West Kirby 23,717 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brighton 12,477 L</td>
<td>Brixham 12,506 M</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brixham 12,506 M</td>
<td>Whitby 12,525 M</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whitby 12,525 M</td>
<td>Newquay 12,698 M</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newquay 12,698 M</td>
<td>Hove 12,771 L</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hove 12,771 L</td>
<td>Ryde 13,045 M</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ryde 13,045 M</td>
<td>Paimpton 13,078 L</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paimpton 13,078 L</td>
<td>Southsea 13,242 L</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southsea 13,242 L</td>
<td>Berwick 13,609 M</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berwick 13,609 M</td>
<td>Bournemouth 13,970 L</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bournemouth 13,970 L</td>
<td>Weymouth 13,992 L</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weymouth 13,992 L</td>
<td>Dawlish 14,231 M</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dawlish 14,231 M</td>
<td>Falmouth 14,282 M</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falmouth 14,282 M</td>
<td>Bexhill-on-Sea 14,464 L</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bexhill-on-Sea 14,464 L</td>
<td>Weston-S-mare 14,578 L</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weston-S-mare 14,578 L</td>
<td>Southend-on-Sea 14,943 L</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southend-on-Sea 14,943 L</td>
<td>Teignmouth 15,363 M</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teignmouth 15,363 M</td>
<td>Burnham-on-Sea 15,946 M</td>
<td>Weymouth 13,992 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burnham-on-Sea 15,946 M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>Skegness</td>
<td>7,891</td>
<td>M</td>
<td>Great Yarmouth</td>
<td>8,283</td>
<td>L</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>-------</td>
<td>----</td>
<td>----------------</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>Margate</td>
<td>7,895</td>
<td>L</td>
<td></td>
<td>Penzance</td>
<td>8,726</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clacton-on-Sea</td>
<td>8,980</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ramsgate</td>
<td>9,079</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blackpool</td>
<td>9,097</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>South Shields</td>
<td>9,166</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>New Brighton</td>
<td>9,195</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dover</td>
<td>9,273</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hastings</td>
<td>10,213</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ilfracombe</td>
<td>10,402</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dover</td>
<td>10,442</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Folkestone</td>
<td>10,611</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scarborough</td>
<td>10,799</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bognor Regis</td>
<td>10,836</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fleetwood</td>
<td>10,944</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brixham</td>
<td>11,287</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heysham</td>
<td>11,582</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lowestoft</td>
<td>11,614</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Berwick</td>
<td>11,923</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ryde</td>
<td>12,398</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paignton</td>
<td>12,472</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Morecambe</td>
<td>12,789</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Whitby</td>
<td>13,041</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Littlehampton</td>
<td>13,327</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southend-on-Sea</td>
<td>13,474</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weston-S-mare</td>
<td>13,500</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Teignmouth</td>
<td>13,533</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minehead</td>
<td>13,555</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eastbourne</td>
<td>13,748</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hove</td>
<td>14,242</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Newquay</td>
<td>14,289</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bournemouth</td>
<td>14,359</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Falmouth</td>
<td>14,501</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brighton</td>
<td>14,577</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deal</td>
<td>14,609</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Burnhamp-on-Sea</td>
<td>14,978</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bexhill-on-Sea</td>
<td>15,092</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dawlish</td>
<td>15,093</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southport</td>
<td>15,397</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Herne Bay</td>
<td>15,829</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weymouth</td>
<td>15,928</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crosby</td>
<td>15,984</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southsea</td>
<td>16,137</td>
<td>L</td>
</tr>
<tr>
<td>Employment</td>
<td>4,601</td>
<td>M</td>
<td>Ilfracombe</td>
<td>8,242</td>
<td>M</td>
<td>Exmouth</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>---</td>
<td>------------</td>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Skegness</td>
<td>5,482</td>
<td>M</td>
<td>Ramsgate</td>
<td>8,479</td>
<td>L</td>
<td>Broadstairs</td>
</tr>
<tr>
<td>New Brighton</td>
<td>6,169</td>
<td>L</td>
<td>Heysham</td>
<td>8,561</td>
<td>M</td>
<td>Holylake</td>
</tr>
<tr>
<td>South Shields</td>
<td>6,965</td>
<td>L</td>
<td>Torquay</td>
<td>8,854</td>
<td>L</td>
<td>West Kirby</td>
</tr>
<tr>
<td>Ilfracombe</td>
<td>8,242</td>
<td>M</td>
<td>Hastings</td>
<td>8,950</td>
<td>L</td>
<td>Southsea</td>
</tr>
<tr>
<td>Blackpool</td>
<td>7,118</td>
<td>L</td>
<td>Scarborough</td>
<td>9,066</td>
<td>L</td>
<td>Christchurch</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>7,306</td>
<td>L</td>
<td>Brixham</td>
<td>9,149</td>
<td>M</td>
<td>Formby</td>
</tr>
<tr>
<td>Dover</td>
<td>7,519</td>
<td>M</td>
<td>Minehead</td>
<td>9,565</td>
<td>M</td>
<td>Whitstable</td>
</tr>
<tr>
<td>Margate</td>
<td>7,895</td>
<td>L</td>
<td>Morecambe</td>
<td>9,668</td>
<td>M</td>
<td>Swanage</td>
</tr>
<tr>
<td>Fleetwood</td>
<td>7,958</td>
<td>M</td>
<td>Lowestoft</td>
<td>9,778</td>
<td>L</td>
<td>Clevedon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ryde</td>
<td>10,048</td>
<td>M</td>
<td>Sidmouth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paignton</td>
<td>10,099</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bognor Regis</td>
<td>10,236</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Berwick</td>
<td>10,561</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Folkestone</td>
<td>10,627</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dawlish</td>
<td>10,874</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bexhill-on-Sea</td>
<td>11,006</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Newquay</td>
<td>11,250</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Whitby</td>
<td>11,606</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weston-S-mare</td>
<td>11,926</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teignmouth</td>
<td>12,029</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Burnham-on-Sea</td>
<td>12,046</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crosby</td>
<td>12,093</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weymouth</td>
<td>12,094</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eastbourne</td>
<td>12,128</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Southport</td>
<td>12,481</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deal</td>
<td>12,757</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Littlehampton</td>
<td>13,494</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Southend-on-Sea</td>
<td>13,641</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Falmouth</td>
<td>14,066</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hove</td>
<td>14,067</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bournemouth</td>
<td>14,108</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brighton</td>
<td>14,119</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thornton-Cleveleys</td>
<td>14,709</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lytham St Annes</td>
<td>14,826</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Herne Bay</td>
<td>14,883</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hythe</td>
<td>15,277</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>Clacton-on-Sea</td>
<td>6,038</td>
<td>L</td>
<td>Margate</td>
<td>8,358</td>
<td>L</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>-------</td>
<td>---</td>
<td>-----------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Skegness</td>
<td>6,296</td>
<td>M</td>
<td></td>
<td>Ramsgate</td>
<td>8,640</td>
<td>L</td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>6,361</td>
<td>L</td>
<td></td>
<td>Blackpool</td>
<td>9,088</td>
<td>L</td>
</tr>
<tr>
<td>Fleetwood</td>
<td>7,113</td>
<td>M</td>
<td></td>
<td>Littlehampton</td>
<td>9,173</td>
<td>M</td>
</tr>
<tr>
<td>Dover</td>
<td>7,123</td>
<td>M</td>
<td></td>
<td>Ilfracombe</td>
<td>9,212</td>
<td>M</td>
</tr>
<tr>
<td>Lowestoft</td>
<td>8,117</td>
<td>L</td>
<td></td>
<td>Bognor Regis</td>
<td>9,424</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hastings</td>
<td>10,113</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>South Shields</td>
<td>10,411</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Whitby</td>
<td>10,855</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Folkestone</td>
<td>11,176</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Berwick</td>
<td>11,213</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heysham</td>
<td>11,736</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scarborough</td>
<td>12,055</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Morecambe</td>
<td>12,477</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brixham</td>
<td>12,542</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minehead</td>
<td>12,753</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Herne Bay</td>
<td>12,835</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Torquay</td>
<td>13,169</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weston-S-mare</td>
<td>13,423</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ryde</td>
<td>13,603</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paignton</td>
<td>13,627</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Burnham-on-Sea</td>
<td>13,821</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southend-on-Sea</td>
<td>14,181</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eastbourne</td>
<td>14,622</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dawlish</td>
<td>14,622</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penzance</td>
<td>14,945</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bexhill-on-Sea</td>
<td>15,016</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deal</td>
<td>15,231</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weymouth</td>
<td>15,309</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Teignmouth</td>
<td>15,558</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bournemouth</td>
<td>15,802</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Whitstable</td>
<td>15,894</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exmouth</td>
<td>15,981</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Newquay</td>
<td>15,996</td>
<td>M</td>
</tr>
</tbody>
</table>

434
<table>
<thead>
<tr>
<th>Crime and disorder</th>
<th>Southsea</th>
<th>6,759</th>
<th>L</th>
<th>Margate</th>
<th>11,106</th>
<th>L</th>
<th>Lowestoft</th>
<th>16,341</th>
<th>L</th>
<th>Lytham St Annes</th>
<th>24,447</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blackpool</td>
<td>11,363</td>
<td>L</td>
<td>Morecambe</td>
<td>17,024</td>
<td>M</td>
<td>Swanage</td>
<td>24,583</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fleetwood</td>
<td>11,423</td>
<td>M</td>
<td>South Shields</td>
<td>17,087</td>
<td>L</td>
<td>Thorton-Cleveleys</td>
<td>24,940</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dover</td>
<td>11,515</td>
<td>M</td>
<td>Eastbourne</td>
<td>17,804</td>
<td>L</td>
<td>Brixham</td>
<td>25,360</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Torquay</td>
<td>11,650</td>
<td>L</td>
<td>Hove</td>
<td>18,607</td>
<td>L</td>
<td>Sidmouth</td>
<td>25,856</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hastings</td>
<td>11,911</td>
<td>L</td>
<td>Newquay</td>
<td>19,419</td>
<td>M</td>
<td>Holylake</td>
<td>25,945</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bognor Regis</td>
<td>12,091</td>
<td>M</td>
<td>Teignmouth</td>
<td>19,866</td>
<td>M</td>
<td>Formby</td>
<td>28,258</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Littlehampton</td>
<td>12,335</td>
<td>M</td>
<td>Paignton</td>
<td>20,254</td>
<td>L</td>
<td>West Kirby</td>
<td>29,389</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ilfracombe</td>
<td>12,824</td>
<td>M</td>
<td>Broadstairs</td>
<td>20,266</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ramsgate</td>
<td>12,968</td>
<td>L</td>
<td>Whitby</td>
<td>20,317</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bournemouth</td>
<td>13,154</td>
<td>L</td>
<td>Burnham-on-Sea</td>
<td>20,370</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penzance</td>
<td>13,493</td>
<td>M</td>
<td>Exmouth</td>
<td>21,160</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weston-S-mare</td>
<td>13,721</td>
<td>L</td>
<td>Crosby</td>
<td>21,366</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skegness</td>
<td>14,213</td>
<td>M</td>
<td>Dawlish</td>
<td>21,399</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Great Yarmouth</td>
<td>14,508</td>
<td>L</td>
<td>Berwick</td>
<td>21,641</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clacton-on-Sea</td>
<td>14,548</td>
<td>L</td>
<td>New Brighton</td>
<td>21,725</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Falmouth</td>
<td>14,560</td>
<td>M</td>
<td>Bexhill-on-Sea</td>
<td>21,856</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scarborough</td>
<td>15,009</td>
<td>L</td>
<td>Herne Bay</td>
<td>22,081</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heysham</td>
<td>15,120</td>
<td>M</td>
<td>Minehead</td>
<td>22,092</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Folkestone</td>
<td>15,274</td>
<td>L</td>
<td>Hythe</td>
<td>22,541</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brighton</td>
<td>15,656</td>
<td>L</td>
<td>Whitstable</td>
<td>22,598</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ryde</td>
<td>15,926</td>
<td>M</td>
<td>Christchurch</td>
<td>22,987</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southend-on-Sea</td>
<td>15,953</td>
<td>L</td>
<td>Clevedon</td>
<td>23,083</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weymouth</td>
<td>16,118</td>
<td>L</td>
<td>Southport</td>
<td>23,512</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

435
<table>
<thead>
<tr>
<th>Health and disability</th>
<th>Blackpool</th>
<th>4,754</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Brighton</td>
<td>5,495</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Skegness</td>
<td>6,021</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Hastings</td>
<td>6,109</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Morecambe</td>
<td>6,911</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Heysham</td>
<td>7,400</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Scarborough</td>
<td>7,784</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Margate</td>
<td>8,049</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Weymouth</td>
<td>8,125</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Hove</td>
<td>8,395</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Bognor Regis</td>
<td>8,678</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Penzance</td>
<td>8,857</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Dover</td>
<td>9,001</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Southport</td>
<td>9,220</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Eastbourne</td>
<td>9,576</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>South Shields</td>
<td>9,709</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Fleetwood</td>
<td>10,109</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Folkestone</td>
<td>10,189</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Minehead</td>
<td>10,563</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Bexhill-on-Sea</td>
<td>10,643</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Ramsgate</td>
<td>10,651</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Clacton-on-Sea</td>
<td>10,733</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Whitby</td>
<td>10,902</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Crosby</td>
<td>11,117</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Torquay</td>
<td>11,474</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Brixham</td>
<td>11,641</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Littlehampton</td>
<td>12,402</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Ryde</td>
<td>12,451</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Great Yarmouth</td>
<td>12,856</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Bournemouth</td>
<td>12,861</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Paignton</td>
<td>12,928</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Deal</td>
<td>13,205</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Southend-on-Sea</td>
<td>13,320</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Holylake</td>
<td>13,484</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Hylthe</td>
<td>13,704</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Berwick</td>
<td>13,970</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Herne Bay</td>
<td>14,805</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Weston-S-mare</td>
<td>15,047</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Southsea</td>
<td>15,206</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Burnham-on-Sea</td>
<td>15,287</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>West Kirby</td>
<td>15,324</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Formby</td>
<td>15,479</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Teignmouth</td>
<td>15,864</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Lowestoft</td>
<td>16,154</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Thorton-Cleveleys</td>
<td>16,517</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Dawlish</td>
<td>16,712</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Lytham St Annes</td>
<td>17,169</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Broadstairs</td>
<td>17,391</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Swanage</td>
<td>17,432</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Exmouth</td>
<td>21,234</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Newquay</td>
<td>18,459</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Whitstable</td>
<td>18,459</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Christchurch</td>
<td>22,932</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Clevedon</td>
<td>23,126</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Sidmouth</td>
<td>23,996</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing and services</td>
<td>Minehead</td>
<td>7,024</td>
<td>M</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Blackpool</td>
<td>7,783</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Newquay</td>
<td>8,125</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Brighton</td>
<td>8,420</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Eastbourne</td>
<td>8,689</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Bognor Regis</td>
<td>8,928</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Littlehampton</td>
<td>9,101</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Bournemouth</td>
<td>16,242</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Broadstairs</td>
<td>16,338</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Christchurch</td>
<td>16,566</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Swanage</td>
<td>17,036</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Ilfracombe</td>
<td>17,134</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Bournemouth</td>
<td>16,242</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Broadstairs</td>
<td>16,338</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Christchurch</td>
<td>16,566</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Swanage</td>
<td>17,036</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Ilfracombe</td>
<td>17,134</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>West Kirby</td>
<td>25,935</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Morecambe</td>
<td>26,291</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Lytham St Annes</td>
<td>26,396</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Southport</td>
<td>26,591</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Crosby</td>
<td>27,083</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

436
<table>
<thead>
<tr>
<th>Location</th>
<th>Population</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowestoft</td>
<td>14,486</td>
<td>L</td>
</tr>
<tr>
<td>Eastbourne</td>
<td>14,680</td>
<td>L</td>
</tr>
<tr>
<td>Weymouth</td>
<td>14,978</td>
<td>L</td>
</tr>
<tr>
<td>Skegness</td>
<td>15,845</td>
<td>M</td>
</tr>
<tr>
<td>Ryde</td>
<td>15,874</td>
<td>M</td>
</tr>
<tr>
<td>Broadstairs</td>
<td>16,137</td>
<td>M</td>
</tr>
</tbody>
</table>
Appendix B: Tables of Results (Chapter 6)

All tables and figures are the work of the author.
<table>
<thead>
<tr>
<th>Factor</th>
<th>Resort advantage or disadvantage?</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age, 2001</td>
<td>Advantage</td>
<td>8.6</td>
<td>1684</td>
<td>0.001</td>
<td>0.419</td>
</tr>
<tr>
<td>Children, 2010</td>
<td>Disadvantage</td>
<td>8.0</td>
<td>1684</td>
<td>0.001</td>
<td>0.390</td>
</tr>
<tr>
<td>Working age, 2010</td>
<td>Disadvantage</td>
<td>6.5</td>
<td>1684</td>
<td>0.001</td>
<td>0.317</td>
</tr>
<tr>
<td>Pensioners, 2010</td>
<td>Advantage</td>
<td>8.5</td>
<td>1684</td>
<td>0.001</td>
<td>0.414</td>
</tr>
<tr>
<td>Retired, 2001</td>
<td>Advantage</td>
<td>7.7</td>
<td>1684</td>
<td>0.001</td>
<td>0.375</td>
</tr>
<tr>
<td>White, 2001</td>
<td>Advantage</td>
<td>0.7</td>
<td>1684</td>
<td>0.514</td>
<td>0.034</td>
</tr>
<tr>
<td>One person household, 2001</td>
<td>Disadvantage</td>
<td>0.5</td>
<td>1684</td>
<td>0.615</td>
<td>0.051</td>
</tr>
<tr>
<td>One person household above pensionable age, 2001</td>
<td>Advantage</td>
<td>4.1</td>
<td>1684</td>
<td>0.001</td>
<td>0.420</td>
</tr>
<tr>
<td>One person household lone parent, 2001</td>
<td>Disadvantage</td>
<td>5.9</td>
<td>1684</td>
<td>0.001</td>
<td>0.604</td>
</tr>
<tr>
<td>Dependent children in lone parent families, 2010</td>
<td>Disadvantage</td>
<td>11.7</td>
<td>1684</td>
<td>0.001</td>
<td>0.570</td>
</tr>
<tr>
<td>IB/SDA claimants, 2010</td>
<td>Disadvantage</td>
<td>9.6</td>
<td>1684</td>
<td>0.001</td>
<td>0.468</td>
</tr>
<tr>
<td>ESA claimants, 2010</td>
<td>Disadvantage</td>
<td>10.3</td>
<td>1684</td>
<td>0.001</td>
<td>0.502</td>
</tr>
<tr>
<td>DLA/AA claimants, 2010</td>
<td>Disadvantage</td>
<td>10.6</td>
<td>1684</td>
<td>0.001</td>
<td>0.517</td>
</tr>
<tr>
<td>No qualification, 2001</td>
<td>Disadvantage</td>
<td>13.5</td>
<td>1684</td>
<td>0.001</td>
<td>0.658</td>
</tr>
<tr>
<td>Qualified to degree or higher, 2001</td>
<td>Advantage</td>
<td>11.1</td>
<td>1684</td>
<td>0.001</td>
<td>0.541</td>
</tr>
<tr>
<td>In managerial occupation, 2001</td>
<td>Advantage</td>
<td>11.4</td>
<td>1684</td>
<td>0.001</td>
<td>0.556</td>
</tr>
<tr>
<td>In manual occupation, 2001</td>
<td>Disadvantage</td>
<td>11.4</td>
<td>1684</td>
<td>0.001</td>
<td>0.556</td>
</tr>
<tr>
<td>Out-of work benefits claimants, 2010</td>
<td>Disadvantage</td>
<td>12.7</td>
<td>1684</td>
<td>0.001</td>
<td>0.619</td>
</tr>
<tr>
<td>JSA claimants, 2010</td>
<td>Disadvantage</td>
<td>13.4</td>
<td>1684</td>
<td>0.001</td>
<td>0.653</td>
</tr>
<tr>
<td>JSA 6 months, 2010</td>
<td>Disadvantage</td>
<td>12.3</td>
<td>1684</td>
<td>0.001</td>
<td>0.599</td>
</tr>
<tr>
<td>JSA 12 months, 2010</td>
<td>Disadvantage</td>
<td>11.2</td>
<td>1684</td>
<td>0.001</td>
<td>0.546</td>
</tr>
<tr>
<td>JSA Youth, 2010</td>
<td>Disadvantage</td>
<td>13.9</td>
<td>1684</td>
<td>0.001</td>
<td>0.677</td>
</tr>
<tr>
<td>Children in workless families, 2010</td>
<td>Disadvantage</td>
<td>13.4</td>
<td>1680</td>
<td>0.001</td>
<td>0.653</td>
</tr>
<tr>
<td>Income Support claimants, 2010</td>
<td>Disadvantage</td>
<td>12.0</td>
<td>1684</td>
<td>0.001</td>
<td>0.585</td>
</tr>
<tr>
<td>Pension Credit claimants, 2010</td>
<td>Disadvantage</td>
<td>9.9</td>
<td>1684</td>
<td>0.001</td>
<td>0.482</td>
</tr>
<tr>
<td>Have no car or van, 2001</td>
<td>Disadvantage</td>
<td>11.8</td>
<td>1684</td>
<td>0.001</td>
<td>0.575</td>
</tr>
</tbody>
</table>
Table B2: Area condition – results of t-tests

<table>
<thead>
<tr>
<th>Factor</th>
<th>Resort advantage or disadvantage?</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment in primary industries, 2010</td>
<td>Advantage</td>
<td>0.1</td>
<td>1684</td>
<td>0.910</td>
<td>0.009</td>
</tr>
<tr>
<td>Employment in secondary industries, 2010</td>
<td>Advantage</td>
<td>1.6</td>
<td>1684</td>
<td>0.099</td>
<td>0.078</td>
</tr>
<tr>
<td>Employment in tertiary industries, 2010</td>
<td>Disadvantage</td>
<td>1.6</td>
<td>1684</td>
<td>0.108</td>
<td>0.078</td>
</tr>
<tr>
<td>Employment in public sector, 2010</td>
<td>Disadvantage</td>
<td>2.1</td>
<td>1684</td>
<td>0.040</td>
<td>0.102</td>
</tr>
<tr>
<td>Employment in hotel, catering and distribution sector, 2010</td>
<td>Advantage</td>
<td>0.2</td>
<td>1684</td>
<td>0.848</td>
<td>0.010</td>
</tr>
<tr>
<td>Employment in tourism-related jobs, 2010</td>
<td>Advantage</td>
<td>0.7</td>
<td>1684</td>
<td>0.462</td>
<td>0.034</td>
</tr>
<tr>
<td>Location quotient for public sector, 2010</td>
<td>Disadvantage</td>
<td>1.2</td>
<td>382</td>
<td>0.218</td>
<td>0.321</td>
</tr>
<tr>
<td>Location quotient for hotel, catering and distribution sector, 2010</td>
<td>Advantage</td>
<td>1.3</td>
<td>382</td>
<td>0.197</td>
<td>0.347</td>
</tr>
<tr>
<td>Location quotient for tourism, 2010</td>
<td>Advantage</td>
<td>1.5</td>
<td>382</td>
<td>0.151</td>
<td>0.401</td>
</tr>
<tr>
<td>Employment rate, 2010</td>
<td>Disadvantage</td>
<td>3.6</td>
<td>382</td>
<td>0.001</td>
<td>1.024</td>
</tr>
<tr>
<td>Full-time, 2010</td>
<td>Advantage</td>
<td>2.2</td>
<td>1684</td>
<td>0.026</td>
<td>0.607</td>
</tr>
<tr>
<td>Part-time, 2010</td>
<td>Disadvantage</td>
<td>2.2</td>
<td>1684</td>
<td>0.028</td>
<td>0.607</td>
</tr>
<tr>
<td>Self-employed, 2001</td>
<td>Advantage</td>
<td>6.6</td>
<td>1684</td>
<td>0.001</td>
<td>0.322</td>
</tr>
<tr>
<td>Household income, 2010</td>
<td>Advantage</td>
<td>10.6</td>
<td>1684</td>
<td>0.001</td>
<td>0.517</td>
</tr>
<tr>
<td>House prices, 2010</td>
<td>Advantage</td>
<td>9.9</td>
<td>382</td>
<td>0.001</td>
<td>1.013</td>
</tr>
<tr>
<td>Owner-occupied housing, 2001</td>
<td>Advantage</td>
<td>7.8</td>
<td>1684</td>
<td>0.001</td>
<td>0.380</td>
</tr>
<tr>
<td>Social rented housing, 2001</td>
<td>Disadvantage</td>
<td>6.5</td>
<td>1684</td>
<td>0.001</td>
<td>0.317</td>
</tr>
<tr>
<td>Private rented housing, 2001</td>
<td>Disadvantage</td>
<td>3.1</td>
<td>1684</td>
<td>0.002</td>
<td>0.151</td>
</tr>
<tr>
<td>Overcrowded households, 2001</td>
<td>Disadvantage</td>
<td>2.5</td>
<td>1684</td>
<td>0.014</td>
<td>0.122</td>
</tr>
<tr>
<td>Households without central heating, 2001</td>
<td>Disadvantage</td>
<td>5.7</td>
<td>1684</td>
<td>0.001</td>
<td>0.278</td>
</tr>
<tr>
<td>Households without sole use of bath, shower or toilet, 2001</td>
<td>Disadvantage</td>
<td>1.3</td>
<td>1684</td>
<td>0.001</td>
<td>0.378</td>
</tr>
<tr>
<td>Vacant dwellings, 2001</td>
<td>Disadvantage</td>
<td>13.7</td>
<td>1684</td>
<td>0.001</td>
<td>0.668</td>
</tr>
<tr>
<td>Crime rate per 1,000, 2010</td>
<td>Disadvantage</td>
<td>5.0</td>
<td>382</td>
<td>0.001</td>
<td>0.512</td>
</tr>
</tbody>
</table>
Table B3: Results of one-way ANOVA, seven components, four clusters

<table>
<thead>
<tr>
<th>Component</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component 1</td>
<td>Between Groups</td>
<td>69.352</td>
<td>3</td>
<td>23.117</td>
<td>27.785</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>328.648</td>
<td>395</td>
<td>.832</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>398.000</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component 2</td>
<td>Between Groups</td>
<td>172.910</td>
<td>3</td>
<td>57.637</td>
<td>101.144</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>225.090</td>
<td>395</td>
<td>.570</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>398.000</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component 3</td>
<td>Between Groups</td>
<td>8.301</td>
<td>3</td>
<td>2.767</td>
<td>2.805</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>389.699</td>
<td>395</td>
<td>.987</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>398.000</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component 4</td>
<td>Between Groups</td>
<td>188.159</td>
<td>3</td>
<td>62.720</td>
<td>118.062</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>209.841</td>
<td>395</td>
<td>.531</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>398.000</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component 5</td>
<td>Between Groups</td>
<td>107.219</td>
<td>3</td>
<td>35.740</td>
<td>48.549</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>290.781</td>
<td>395</td>
<td>.736</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>398.000</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component 6</td>
<td>Between Groups</td>
<td>120.046</td>
<td>3</td>
<td>40.015</td>
<td>56.866</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>277.954</td>
<td>395</td>
<td>.704</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>398.000</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component 7</td>
<td>Between Groups</td>
<td>10.175</td>
<td>3</td>
<td>3.392</td>
<td>3.454</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>387.825</td>
<td>395</td>
<td>.982</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>398.000</td>
<td>398</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B4: The homogenous subsets from Tukey’s test for seven principal components

Component 1

<table>
<thead>
<tr>
<th>Cluster</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>-1.4584782</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>-.0216602</td>
</tr>
<tr>
<td>2</td>
<td>243</td>
<td>.0341326</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>.3633268</td>
</tr>
</tbody>
</table>

Sig. 1.000 .139

Component 2

<table>
<thead>
<tr>
<th>Cluster</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>-6.457427</td>
</tr>
<tr>
<td>2</td>
<td>243</td>
<td>-.3202950</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>-.3123264</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>1.2280922</td>
</tr>
</tbody>
</table>

Sig. .111 1.000

Component 3

<table>
<thead>
<tr>
<th>Cluster</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>-.2249567</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>-.2090712</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>-.0004582</td>
</tr>
<tr>
<td>2</td>
<td>243</td>
<td>.1047732</td>
</tr>
</tbody>
</table>

Sig. .329

Component 4

<table>
<thead>
<tr>
<th>Cluster</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>-1.1404235</td>
</tr>
<tr>
<td>2</td>
<td>243</td>
<td>-.1466518</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>.2825341</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>2.1307690</td>
</tr>
</tbody>
</table>

Sig. 1.000 1.000 1.000 1.000

Component 5

<table>
<thead>
<tr>
<th>Cluster</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>243</td>
<td>-.3916991</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>.3416431</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>.4810455</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>1.0640613</td>
</tr>
</tbody>
</table>

Sig. 1.000 .841 1.000

Component 6

<table>
<thead>
<tr>
<th>Cluster</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>243</td>
<td>-.2741250</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>-.1140745</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>.5633385</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>1.4985561</td>
</tr>
</tbody>
</table>

Sig. .765 1.000 1.000

Component 7

<table>
<thead>
<tr>
<th>Cluster</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>-.5515317</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>-.0715387</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>-.0274347</td>
</tr>
<tr>
<td>2</td>
<td>243</td>
<td>.0832868</td>
</tr>
</tbody>
</table>

Sig. .066 .856
<p>| Table B5: Results of one-way ANOVA, original input variables, four clusters |
|---|----------------|----------------|---|----------------|
| | Sum of Squares | df | Mean Square | F | Sig. |
| Median age of population | | | | | |
| Within Groups | 7196.088 | 395| 42.365 | | |
| Total | 9230.586 | 398| 23.836 | 102.646 | .000 |
| % pop. children | | | | | |
| Within Groups | 5447.456 | 395| 118.512 | | |
| Total | 7340.555 | 398| 18.584 | 97.710 | .000 |
| % pop. working age | | | | | |
| Within Groups | 7703.528 | 395| 19.681 | | |
| Total | 10688.380 | 398| 27.059 | 94.897 | .000 |
| % pop. pensionable age | | | | | |
| Within Groups | 8246.845 | 395| 21.215 | | |
| Total | 14188.334 | 398| 35.920 | 76.530 | .000 |
| Demographic dependency ratio (number of dependents per 100 people of working age) | | | | | |
| Within Groups | 47649.242 | 395| 158.831 | | |
| Total | 89439.863 | 398| 226.430 | 70.146 | .000 |
| % pop. white | | | | | |
| Within Groups | 686.010 | 395| 22.867 | | |
| Total | 1929.801 | 398| 4.886 | 46.805 | .000 |
| % of households single person | | | | | |
| Within Groups | 9678.458 | 395| 32.981 | | |
| Total | 20997.553 | 398| 53.158 | 61.944 | .000 |
| % of households single pensioner | | | | | |
| Within Groups | 1110.226 | 395| 37.075 | | |
| Total | 5453.955 | 398| 13.807 | 26.803 | .000 |
| % of households lone parent with dependent children | | | | | |
| Within Groups | 2443.767 | 395| 81.459 | | |
| Total | 8139.817 | 398| 20.607 | 39.529 | .000 |
| % of working age pop. in employment, classified as managers and professionals | | | | | |
| Within Groups | 9398.686 | 395| 31.329 | | |
| Total | 15112.970 | 398| 81.883 | 81.883 | .000 |
| % of working age pop. in employment, classified as skilled manual | | | | | |
| Within Groups | 766.791 | 395| 5.990 | | |
| Total | 2365.876 | 398| 1.500 | 42.674 | .000 |
| % of all employee jobs that are tourism-related | | | | | |
| Within Groups | 18979.352 | 395| 6326.511 | | |
| Total | 7782.729 | 398| 197.031 | 32.109 | .000 |
| % of working age pop. self-employed | | | | | |
| Within Groups | 1761.316 | 395| 587.055 | | |
| Total | 4305.418 | 398| 10.900 | 53.864 | .000 |
| Median gross annual household income | | | | | |
| Within Groups | 578557892.867 | 395| 192852630.956 | | 21.296 | .000 |
| Total | 3577021799.224 | 398| 9055751.390 | | |
| % of all occupied household spaces owned | | | | | |
| Within Groups | 11546.518 | 395| 3848.839 | | |
| Total | 6919.926 | 398| 175.172 | 21.972 | .000 |
| % of all occupied household spaces rented privately | | | | | |
| Within Groups | 19758.309 | 395| 6586.090 | | |
| Total | 77822.743 | 398| 197.020 | 33.349 | .000 |
| % of all occupied household spaces rented from council/social | | | | | |
| Within Groups | 15743.368 | 395| 4851.123 | | |
| Total | 17167.683 | 398| 434.623 | 10.540 | .000 |
| % of households lacking/sharing bath/shower or inside toilet | | | | | |
| Within Groups | 266.397 | 395| 88.799 | | |
| Total | 1016.339 | 398| 2.573 | 34.512 | .000 |
| % of households with no central heating | | | | | |
| Within Groups | 67.419 | 395| 22.473 | | |
| Total | 38126.637 | 398| 96.523 | .233 | .047 |
| % of households living in overcrowded conditions | | | | | |
| Within Groups | 5041.576 | 395| 1680.525 | | |
| Total | 9607.643 | 398| 24.323 | 69.092 | .000 |
| % of household spaces vacant | | | | | |
| Within Groups | 760.856 | 395| 253.619 | | |
| Total | 1045.516 | 398| 2.647 | 95.818 | .000 |
| Crime | | | | | |
| Within Groups | 559315700.641 | 395| 186438566.880 | | 5.741 | .001 |
| Total | 12828646819.630| 398| 324775868.85 | | |
| % of dependent children receiving child tax-credit in out-of-work | | | | | |
| Within Groups | 45900.069 | 395| 1530.023 | | |
| Total | 37745.156 | 398| 95.557 | 16.012 | .000 |</p>
<table>
<thead>
<tr>
<th>Category</th>
<th>Between Groups</th>
<th>Within Groups</th>
<th>Total</th>
<th>df</th>
<th>F Value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of working age pop. claiming Income Support</td>
<td>359.675</td>
<td>5319.585</td>
<td>5679.261</td>
<td>395</td>
<td>119.892</td>
<td>.000</td>
</tr>
<tr>
<td>% of older people receiving Pension Credit Guarantee Element</td>
<td>2266.372</td>
<td>17375.113</td>
<td>19641.485</td>
<td>395</td>
<td>755.457</td>
<td>.000</td>
</tr>
<tr>
<td>% of working age pop. claiming Out-of-Work benefits</td>
<td>2522.629</td>
<td>22129.553</td>
<td>24652.182</td>
<td>395</td>
<td>8.40876</td>
<td>.000</td>
</tr>
<tr>
<td>% of working age pop. claiming Job Seekers Allowance (JSA)</td>
<td>1276.710</td>
<td>660.332</td>
<td>1936.042</td>
<td>395</td>
<td>425.403</td>
<td>.000</td>
</tr>
<tr>
<td>JSA claimants as % of Out-of-Work benefits claimants</td>
<td>6315.293</td>
<td>13846.705</td>
<td>20161.998</td>
<td>395</td>
<td>2105.098</td>
<td>.000</td>
</tr>
<tr>
<td>% of working age pop. claiming JSA for over 6 months</td>
<td>322.710</td>
<td>600.332</td>
<td>923.042</td>
<td>395</td>
<td>107.570</td>
<td>.000</td>
</tr>
<tr>
<td>% of working age pop. claiming JSA for over 12 months</td>
<td>93.167</td>
<td>261.351</td>
<td>354.518</td>
<td>395</td>
<td>31.056</td>
<td>.000</td>
</tr>
<tr>
<td>JSA claimants (aged 18-24 years) as % of working age pop.</td>
<td>73.297</td>
<td>242.708</td>
<td>316.005</td>
<td>395</td>
<td>24.343</td>
<td>.000</td>
</tr>
<tr>
<td>% of working age pop. claiming Incapacity Benefit/Severe Disability Allowance</td>
<td>112.351</td>
<td>6339.812</td>
<td>6452.663</td>
<td>395</td>
<td>37.617</td>
<td>.040</td>
</tr>
<tr>
<td>% of working age pop. claiming Employment and Support Allowance</td>
<td>25.610</td>
<td>530.655</td>
<td>556.265</td>
<td>395</td>
<td>8.537</td>
<td>.000</td>
</tr>
<tr>
<td>% of working age pop. claiming Disability Living Allowance</td>
<td>183.595</td>
<td>2605.307</td>
<td>2788.903</td>
<td>395</td>
<td>61.198</td>
<td>.000</td>
</tr>
<tr>
<td>% of working age pop. with no qualifications</td>
<td>7303.722</td>
<td>22753.007</td>
<td>30056.730</td>
<td>395</td>
<td>2434.574</td>
<td>.000</td>
</tr>
<tr>
<td>% of working age pop. with higher education (i.e., level 4/5 qualifications)</td>
<td>9667.078</td>
<td>12856.428</td>
<td>22523.506</td>
<td>395</td>
<td>3222.359</td>
<td>.000</td>
</tr>
<tr>
<td>% of households without access to a car or van</td>
<td>11157.487</td>
<td>29037.206</td>
<td>40194.693</td>
<td>395</td>
<td>3719.162</td>
<td>.000</td>
</tr>
<tr>
<td>% of dependent children in lone parent families</td>
<td>2137.553</td>
<td>19713.313</td>
<td>21850.866</td>
<td>395</td>
<td>712.518</td>
<td>.000</td>
</tr>
</tbody>
</table>
Figure B1: Blackpool, Northwest England

(46 clustered LSOAs / 94 resort LSOAs, 49%)
Figure B2: Hastings, Southeast England

(24 clustered LSOAs / 53 resort LSOAs, 45%)
Figure B3: Folkestone, Southeast England

(11 clustered LSOAs / 31 resort LSOAs, 36%)
Figure B4: Scarborough, Yorkshire and the Humber

(12 clustered LSOAs / 34 resort LSOAs, 35%)
Figure B5: Clacton-on-Sea, East of England

(11 clustered LSOAs / 32 resort LSOAs, 34%)
Figure B6: Brighton, Southeast England

(29 clustered LSOAs / 101 resort LSOAs, 29%)
Figure B7: Lowestoft, East of England

(12 clustered LSOAs / 42 resort LSOAs, 29%)
Figure B8: Torquay, Southwest England

(11 clustered LSOAs / 43 resort LSOAs, 26%)
Figure B9: Southend-on-Sea, East of England

(23 clustered LSOAs / 107 resort LSOAs, 22%)
Figure B10: Heysham, Northwest England

(6 clustered LSOAs / 11 resort LSOAs, 55%)
Figure B11: Margate, Southeast England

(14 clustered LSOAs / 27 resort LSOAs, 52%)
Figure B12: Great Yarmouth, East of England

(16 clustered LSOAs / 36 resort LSOAs, 44%)
Figure B13: South Shields, Northeast England

(24 clustered LSOAs / 55 resort LSOAs, 44%)
Figure B14: Ramsgate, Southeast England

(10 clustered LSOAs / 26 resort LSOAs, 39%)
Figure B15: Morecambe, Northwest England

(7 clustered LSOAs / 21 resort LSOAs, 33%)
Figure B16: Falmouth, Southwest England

(3 clustered LSOAs / 14 resort LSOAs, 21%)
Figure B17: Skegness, East Midlands

(7 clustered LSOAs / 12 resort LSOAs, 58%)
Figure B18: Dover, Southeast England

(10 clustered LSOAs / 18 resort LSOAs, 56%)
Figure B19: Ilfracombe, Southwest England

(3 clustered LSOAs / 8 resort LSOAs, 38%)
Figure B20: Weston-Super-Mare, Southwest England

(13 clustered LSOAs / 48 resort LSOAs, 27%)
Figure B21: Weymouth, Southwest England

(8 clustered LSOAs / 31 resort LSOAs, 26%)
Figure B22: Whitby, Yorkshire and the Humber

(2 clustered LSOAs / 9 resort LSOAs, 22%)
Figure B23: Fleetwood, Northwest England

(9 clustered LSOAs / 18 resort LSOAs, 50%)
Figure B24: Penzance, Southwest England

(6 clustered LSOAs / 13 resort LSOAs, 46%)
Figure B25: Littlehampton, Southeast England

(4 clustered LSOAs / 17 resort LSOAs, 24%)