ORCID

Abstract

The effect of two different types and particle sizes (micronised cryo-ground 74 m or ambient ground 400 m) of recycled rubber powder (RRP) were studied during fatigue crack growth (FCG) in NR/BR compound using a fracture mechanics approach. Absolute and relative hysteresis losses using single-edge notch tensile (SENT) specimens were determined with a displacement controlled strain compensating for permanent set of the samples throughout the FCG experiments. Differences in relative hysteresis loss showed that additional energy dissipation, due to multiple new crack surfaces at the crack tip, contributes to the FCG of the RRP compounds. At higher tearing energy, beside other factors affecting the FCG performance of the RRP compounds, both higher absolute and relative hysteresis loss are slightly detrimental to the crack growth rates. At lower tearing energy, the larger RRP filled compound showed slower, but not significant different crack growth rates, than in unfilled NR/BR control compound. Fracture morphologies for NR/BR and RRP filled compound had different fracture surface topography at various tearing energies, which revealed the dependency of the crack growth microstructure on the tearing energies.

DOI

10.5254/rct.20.80440

Publication Date

2020-12-31

Publication Title

Rubber Chemistry and Technology

ISSN

0035-9475

Embargo Period

2021-01-23

Organisational Unit

School of Engineering, Computing and Mathematics

Share

COinS