ORCID

Abstract

An understanding of the hydroelastic response of a flexible circular plate to water waves is relevant to many problems in ocean engineering ranging from offshore wave energy converters and solar wind devices to very large floating structures such as floating airports and ice sheets. This paper describes results from physical model tests undertaken in the COAST laboratory at the University of Plymouth. Response amplitude operators (RAOs) of a floating flexible circular disk are determined for incident monochromatic and irregular wave trains, the latter defined by JONSWAP spectra. Free-surface displacements are measured using wave gauges, and the plate motion recorded using a QUALISYS® motion tracking system. Different basin depths and plate thicknesses are considered in order to quantify the effects of water depth and flexural plate rigidity on the overall dynamic behaviour of the circular disk. We present synchronous and subharmonic nonlinear responses for monochromatic waves, and displacement spectra for irregular waves. The measured wave hydrodynamics and disk hydroelastic responses match theoretical predictions based on linear potential flow theory.

DOI

10.1016/j.euromechflu.2023.01.008

Publication Date

2023-05-01

Publication Title

European Journal of Mechanics - B/Fluids

Volume

99

First Page

148

Last Page

162

ISSN

1873-7390

Embargo Period

2023-02-14

Organisational Unit

School of Engineering, Computing and Mathematics

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS