ORCID

Abstract

Fluvial flows carrying high sediment loads may plunge into reservoirs to form turbidity currents. However, the effects of tributary inflows on reservoir turbidity currents have remained poorly understood to date. Here a 2D double layer-averaged model is used to investigate a series of laboratory-scale numerical cases. By probing into the hydro-sediment-morphodynamic processes, we find that tributary location and inflow conditions have distinct effects on the formation and propagation of reservoir turbidity currents, and lead to complicated flow dynamics and bed deformation at the confluence. Two flow exchange patterns are generated at the confluence: turbidity current intrusion from the main channel into the tributary; and highly concentrated, sediment-laden flow plunging from the tributary into the turbidity current in the main channel. Tributary sediment-laden inflow may cause the stable plunge point to migrate downstream and is conducive to propagation of the turbidity current, whilst the opposite holds in the case of clear-water inflow from the tributary. Tributary inflow leads to a lower sediment flushing efficiency as compared to its counterpart without a tributary. Yet a high sediment concentration in the tributary may reinforce turbidity current in the reservoir, thereby increasing sediment flushing efficiency. Around the confluence, the planar distributions of velocity and bed shear stress of the turbidity current resemble their counterparts in confluence flows carrying low sediment loads or clear water. Yet, the bed exhibits aggradation near the confluence due to the turbidity current, in contrast to pure scour in a river confluence with a low sediment load. Appropriate account of tributary effects is required in studies of reservoir turbidity currents, and for devising strategies for long-term maintenance of reservoir capacity.

DOI

10.1007/s10652-022-09856-3

Publication Date

2022-03-24

Publication Title

Environmental Fluid Mechanics

Volume

23

Issue

2

First Page

259

Last Page

290

ISSN

1567-7419

Embargo Period

2023-09-06

Organisational Unit

School of Engineering, Computing and Mathematics

Share

COinS