ORCID

Abstract

The Internet of Things (IoT) is revolutionizing communication by connecting everyday objects to the Internet, enabling data exchange and automation. Low-Power Wide-Area networks (LPWANs) provide a wireless communication solution optimized for long-range, low-power IoT devices. LoRa is a prominent LPWAN technology; its ability to provide long-range, low-power wireless connectivity makes it ideal for IoT applications that cover large areas or where battery life is critical. Despite its advantages, LoRa uses a random access mode, which makes it susceptible to increased collisions as the network expands. In addition, the scalability of LoRa is affected by the distribution of its transmission parameters. This paper introduces a Reinforcement Learning-based Time-Slotted (RL-TS) LoRa protocol that incorporates a mechanism for distributing transmission parameters. It leverages a reinforcement learning algorithm, enabling nodes to autonomously select their time slots, thereby optimizing the allocation of transmission parameters and TDMA slots. To evaluate the effectiveness of our approach, we conduct simulations to assess the convergence speed of the reinforcement learning algorithm, as well as its impact on throughput and packet delivery ratio (PDR). The results demonstrate significant improvements, with PDR increasing from 0.45–0.85 in LoRa to 0.88–0.97 in RL-TS, and throughput rising from 80–150 packets to 156–172 packets. Additionally, RL-TS achieves 82% reduction in collisions compared to LoRa, highlighting its effectiveness in enhancing network performance. Moreover, a detailed comparison with conventional LoRa and other existing protocols is provided, highlighting the advantages of the proposed method.

Publication Date

2025-04-11

Publication Title

Sensors

Volume

25

Issue

8

ISSN

1424-8220

Keywords

IoT, LPWAN, LoRa, Q-learning, scalability

Share

COinS