An increasing number of human-robot interaction (HRI) studies are now taking place in applied settings with children. These interactions often hinge on verbal interaction to effectively achieve their goals. Great advances have been made in adult speech recognition and it is often assumed that these advances will carry over to the HRI domain and to interactions with children. In this paper, we evaluate a number of automatic speech recognition (ASR) engines under a variety of conditions, inspired by real-world social HRI conditions. Using the data collected we demonstrate that there is still much work to be done in ASR for child speech, with interactions relying solely on this modality still out of reach. However, we also make recommendations for child-robot interaction design in order to maximise the capability that does currently exist.



Publication Date


Publication Title

Proceedings of the 2017 ACM/IEEE Human-Robot Interaction Conference

Organisational Unit

School of Engineering, Computing and Mathematics