Show simple item record

dc.contributor.supervisorMcMullan, David
dc.contributor.authorKadhem, Safaa K.
dc.contributor.otherSchool of Engineering, Computing and Mathematicsen_US
dc.date.accessioned2017-09-20T14:48:31Z
dc.date.available2017-09-20T14:48:31Z
dc.date.issued2017
dc.identifier10407248en_US
dc.identifier.urihttp://hdl.handle.net/10026.1/9966
dc.description.abstract

Hidden Markov models (HMMs) are an efficient tool to describe and model the underlying behaviour of many phenomena. HMMs assume that the observed data are generated independently from a parametric distribution, conditional on an unobserved process that satisfies the Markov property. The model selection or determining the number of hidden states for these models is an important issue which represents the main interest of this thesis. Applying likelihood-based criteria for HMMs is a challenging task as the likelihood function of these models is not available in a closed form. Using the data augmentation approach, we derive two forms of the likelihood function of a HMM in closed form, namely the observed and the conditional likelihoods. Subsequently, we develop several modified versions of the Akaike information criterion (AIC) and Bayesian information criterion (BIC) approximated under the Bayesian principle. We also develop several versions for the deviance information criterion (DIC). These proposed versions are based on the type of likelihood, i.e. conditional or observed likelihood, and also on whether the hidden states are dealt with as missing data or additional parameters in the model. This latter point is referred to as the concept of focus. Finally, we consider model selection from a predictive viewpoint. To this end, we develop the so-called widely applicable information criterion (WAIC). We assess the performance of these various proposed criteria via simulation studies and real-data applications. In this thesis, we apply Poisson HMMs to model the spatial dependence analysis in count data via an application to traffic safety crashes for three highways in the UK. The ultimate interest is in identifying highway segments which have distinctly higher crash rates. Selecting an optimal number of states is an important part of the interpretation. For this purpose, we employ model selection criteria to determine the optimal number of states. We also use several goodness-of-fit checks to assess the model fitted to the data. We implement an MCMC algorithm and check its convergence. We examine the sensitivity of the results to the prior specification, a potential problem given small sample sizes. The Poisson HMMs adopted can provide a different model for analysing spatial dependence on networks. It is possible to identify segments with a higher posterior probability of classification in a high risk state, a task that could prioritise management action.

en_US
dc.language.isoen
dc.publisherUniversity of Plymouth
dc.subject.classificationPhDen_US
dc.titleModel Fit Diagnostics for Hidden Markov Modelsen_US
dc.typeThesis
plymouth.versionpublishableen_US
dc.identifier.doihttp://dx.doi.org/10.24382/1218
dc.rights.embargoperiodNo embargoen_US
dc.type.qualificationDoctorateen_US
rioxxterms.versionNA


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV