Show simple item record

dc.contributor.supervisorMerrifield, Daniel
dc.contributor.authorVoller, Samuel W.
dc.contributor.otherFaculty of Science and Engineeringen_US
dc.date.accessioned2017-08-15T14:52:33Z
dc.date.issued2017
dc.date.issued2017
dc.identifier10110645en_US
dc.identifier.urihttp://hdl.handle.net/10026.1/9826
dc.description.abstract

The impacts of wheat gluten products and short-chain fructooligosaccharides on the health and production of juvenile rainbow trout (Oncorhynchus mykiss) Samuel W. Voller Through the implementation of in vivo feeding trials, the efficacy of three wheat gluten (WG) products, vital (Amytex®), hydrolysed (Merripro®) and soluble hydrolysed (Solpro®) wheat gluten as replacement of soy protein concentrate, and scFOS prebiotic (Profeed®) supplementation were analysed to assess their impacts on intestinal health and production of juvenile rainbow trout. Microbial community analysis in experiment one revealed a degree of diet based modulation with 7.5% and 15% inclusions of wheat gluten (WG) products. Bacterial species diversity was significantly reduced with 15% hydrolysed wheat gluten (HWG) inclusion compared to the plant protein control and 15% vital wheat gluten (VWG) treatments, with sequenced OTUs dominated by the phylum Firmicutes and possible promotion of probiotic species. No detrimental effects were observed on intestinal morphology. These findings led onto a longer duration feed trial with a more holistic, higher resolution approach. Experiment two revealed modulation of the allochthonous intestinal microbiota, with increased proportions of Enterococcus and Weissella in the 10% and 20% VWG treatments. Bacillus and Leuconostoc relative abundances were significantly increased with 10% HWG and soluble hydrolysed (Sol) wheat gluten inclusions. HSP 70 transcripts were significantly down-regulated in all WG treatments compared to the basal soy protein concentrate treatment (SPC) and increased intraepithelial leukocyte counts were observed with 10% VWG inclusion. Growth performance was unaffected by 10% dietary inclusions of WG, however, FCR’s were significantly improved in the 20% VWG treatment compared to the 10% HWG and Soluble treatments. This led to the investigation of increased inclusion levels of WG products in experiment three. All WG treatments in experiment three yielded significantly improved growth performance. Somatic indices were significantly increased with 30% blended WG inclusion compared to the SPC treatment. Modulation of allochthonous intestinal microbiota was observed to a lower degree than the previous experiments, with a dose response observed with increasing blended WG inclusion. In the final experiment two basal diets (SPC and 20% Blended) and two scFOS supplemented diets (SPC + FOS and 20% Blended + FOS) were investigated for the effect on growth performance, gut health and allochthonous microbial population. Growth performance was unaffected, however, modulation of the allochthonous microbial population was observed with an apparent synergistic effect of scFOS supplementation in WG diets. This synergistic trend was also observed in the transcription level expression of immune relevant genes. 20% WG inclusion with additional scFOS supplementation observed significant down regulation of the pro-inflammatory cytokine TNF-α, as well as HSP 70, CASP 3 and Glute ST compared to the 20% Blend treatment. The present research demonstrates dietary inclusions of WG products, solely or blended, at the expense of soy protein concentrate to modulate the allochthonous microbial population, potentially promoting probiotic species, whilst reducing the levels of intestinal stress in juvenile rainbow trout. Supplementation of the prebiotic scFOS modulated the microbial populations, enhancing the proportion of potential probiotic species, and combined with WG inclusions, reduce intestinal and oxidative stress and inflammation biomarkers, with no observed deleterious effects.

en_US
dc.description.sponsorshipTereosen_US
dc.description.sponsorshipPlymouth Universityen_US
dc.language.isoen
dc.publisherUniversity of Plymouth
dc.subjectAquaculture nutrition
dc.subjectPlant Protein
dc.subjectPrebiotics
dc.subjectTrout
dc.subjectRainbow trout
dc.subjectAquacultureen_US
dc.subject.classificationPhDen_US
dc.titleThe impacts of wheat gluten products and short-chain fructooligosaccharides on the health and production of juvenile rainbow trout (Oncorhynchus mykiss)en_US
dc.typeThesis
plymouth.versionpublishableen_US
dc.identifier.doihttp://dx.doi.org/10.24382/422
dc.rights.embargodate2018-02-15T14:52:33Z
dc.rights.embargoperiod6 monthsen_US
dc.type.qualificationDoctorateen_US
rioxxterms.versionNA


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV