Show simple item record

dc.contributor.authorGébelin, Aen
dc.contributor.authorTeyssier, Cen
dc.contributor.authorHeizler, MTen
dc.contributor.authorMulch, Aen
dc.date.accessioned2017-03-14T14:58:58Z
dc.date.available2017-03-14T14:58:58Z
dc.date.issued2015-01-01en
dc.identifier.issn0016-7606en
dc.identifier.urihttp://hdl.handle.net/10026.1/8614
dc.description.abstract

Combined petrofabric, microstructural, stable isotopic, and 40Ar/39Ar geochronologic data provide a new perspective on the Cenozoic evolution of the northern Snake Range metamorphic core complex in east-central Nevada. This core complex is bounded by the northern Snake Range detachment, interpreted as a rolling-hinge detachment, and by an underlying shear zone that is dominated by muscovite-bearing quartzite mylonite and interlayered micaschist. In addition to petrofabric, microstructural analysis, and 40Ar/39Ar geochronology, we use hydrogen isotope ratios (δD) in synkinematic white mica to characterize fluid-rock interaction across the rolling-hinge detachment. Results indicate that the western flank of the range preserves mostly Eocene deformation (49-45 Ma), characterized by coaxial quartz fabrics and the dominant presence of metamorphic fluids, although the imprint of meteoric fluids increases structurally downward and culminates in a shear zone with a white mica 40Ar/39Ar plateau age of ca. 27 Ma. In contrast, the eastern flank of the range displays pervasive noncoaxial (top-tothe-east) fabrics defined by white mica that formed in the presence of meteoric fluids and yield Oligo cene-Miocene 40Ar/39Ar ages (27-21 Ma). Evolution of the Oligocene-Miocene rolling-hinge detachment controlled where and when faulting was active or became inactive owing to rotation, and therefore where fluids were able to circulate from the surface to the brittle-ductile transition. On the western flank (rotated detachment), faulting became inactive early, while continued active faulting on the eastern flank of the detachment allowed surface fluids to reach the mylonitic quartzite. The combined effects of synkinematic recrystallization and fluid inter action reset argon and hydrogen isotope ratios in white mica until the early Miocene (ca. 21 Ma), when the brittle-ductile transition was exhumed beneath the detachment.

en
dc.format.extent149 - 161en
dc.language.isoenen
dc.titleMeteoric water circulation in a rolling-hinge detachment system (northern snake range core complex, Nevada)en
dc.typeJournal Article
plymouth.issue1-2en
plymouth.volume127en
plymouth.publication-statusPublisheden
plymouth.journalBulletin of the Geological Society of Americaen
dc.identifier.doi10.1130/B31063.1en
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
dc.identifier.eissn1943-2674en
dc.rights.embargoperiodNot knownen
rioxxterms.versionofrecord10.1130/B31063.1en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV